bas.1 Partial Isomorphisms

Definition bas.1. Given two structures \(\mathcal{M} \) and \(\mathcal{N} \), a partial isomorphism from \(\mathcal{M} \) to \(\mathcal{N} \) is a finite partial function \(p \) taking arguments in \(|\mathcal{M}| \) and returning values in \(|\mathcal{N}| \), which satisfies the isomorphism conditions from ?? on its domain:

1. \(p \) is injective;
2. for every constant symbol \(c \): if \(p(c^\mathcal{M}) \) is defined, then \(p(c^\mathcal{M}) = c^\mathcal{N} \);
3. for every \(n \)-place predicate symbol \(P \): if \(a_1, \ldots, a_n \) are in the domain of \(p \), then \(\langle a_1, \ldots, a_n \rangle \in P^\mathcal{M} \) if and only if \(\langle p(a_1), \ldots, p(a_n) \rangle \in P^\mathcal{N} \);
4. for every \(n \)-place function symbol \(f \): if \(a_1, \ldots, a_n \) are in the domain of \(p \), then \(p(f^\mathcal{M}(a_1, \ldots, a_n)) = f^\mathcal{N}(p(a_1), \ldots, p(a_n)) \).

That \(p \) is finite means that \(\text{dom}(p) \) is finite.

Notice that the empty function \(\emptyset \) is always a partial isomorphism between any two structures.

Definition bas.2. Two structures \(\mathcal{M} \) and \(\mathcal{N} \), are partially isomorphic, written \(\mathcal{M} \simeq_p \mathcal{N} \), if and only if there is a non-empty set \(I \) of partial isomorphisms between \(\mathcal{M} \) and \(\mathcal{N} \) satisfying the back-and-forth property:

1. (Forth) For every \(p \in I \) and \(a \in |\mathcal{M}| \) there is \(q \in I \) such that \(p \subseteq q \) and \(a \) is in the domain of \(q \);
2. (Back) For every \(p \in I \) and \(b \in |\mathcal{N}| \) there is \(q \in I \) such that \(p \subseteq q \) and \(b \) is in the range of \(q \).

Theorem bas.3. If \(\mathcal{M} \simeq_p \mathcal{N} \) and \(\mathcal{M} \) and \(\mathcal{N} \) are enumerable, then \(\mathcal{M} \simeq \mathcal{N} \).

Proof. Since \(\mathcal{M} \) and \(\mathcal{N} \) are enumerable, let \(|\mathcal{M}| = \{a_0, a_1, \ldots \} \) and \(|\mathcal{N}| = \{b_0, b_1, \ldots \} \). Starting with an arbitrary \(p_0 \in I \), we define an increasing sequence of partial isomorphisms \(p_0 \subseteq p_1 \subseteq p_2 \subseteq \cdots \) as follows:

1. if \(n + 1 \) is odd, say \(n = 2r \), then using the Forth property find a \(p_{n+1} \in I \) such that \(p_n \subseteq p_{n+1} \) and \(a_r \) is in the domain of \(p_{n+1} \);
2. if \(n + 1 \) is even, say \(n + 1 = 2r \), then using the Back property find a \(p_{n+1} \in I \) such that \(p_n \subseteq p_{n+1} \) and \(b_r \) is in the range of \(p_{n+1} \).

If we now put:

\[
p = \bigcup_{n \geq 0} p_n,
\]

we have that \(p \) is a an isomorphism between \(\mathcal{M} \) and \(\mathcal{N} \). \(\square \)

Problem bas.1. Show in detail that \(p \) as defined in Theorem bas.3 is in fact an isomorphism.
Theorem bas.4. Suppose \mathcal{M} and \mathcal{N} are structures for a purely relational language (a language containing only predicate symbols, and no function symbols or constants). Then if $\mathcal{M} \simeq_p \mathcal{N}$, also $\mathcal{M} \equiv \mathcal{N}$.

Proof. By induction on formulas, one shows that if a_1, \ldots, a_n and b_1, \ldots, b_n are such that there is a partial isomorphism p mapping each a_i to b_i and $s_1(x_i) = a_i$ and $s_2(x_i) = b_i$ (for $i = 1, \ldots, n$), then $\mathcal{M}, s_1 \models \varphi$ if and only if $\mathcal{N}, s_2 \models \varphi$. The case for $n = 0$ gives $\mathcal{M} \equiv \mathcal{N}$.

Remark 1. If function symbols are present, the previous result is still true, but one needs to consider the isomorphism induced by p between the substructure of \mathcal{M} generated by a_1, \ldots, a_n and the substructure of \mathcal{N} generated by b_1, \ldots, b_n.

The previous result can be “broken down” into stages by establishing a connection between the number of nested quantifiers in a formula and how many times the relevant partial isomorphisms can be extended.

Definition bas.5. For any formula φ, the quantifier rank of φ, denoted by $\text{qr}(\varphi) \in \mathbb{N}$, is recursively defined as the highest number of nested quantifiers in φ. Two structures \mathcal{M} and \mathcal{N} are n-equivalent, written $\mathcal{M} \equiv_n \mathcal{N}$, if they agree on all sentences of quantifier rank less than or equal to n.

Proposition bas.6. Let \mathcal{L} be a finite purely relational language, i.e., a language containing finitely many predicate symbols and constant symbols, and no function symbols. Then for each $n \in \mathbb{N}$ there are only finitely many first-order sentences in the language \mathcal{L} that have quantifier rank no greater than n, up to logical equivalence.

Definition bas.7. Given a structure \mathcal{M}, let $|\mathcal{M}|^{<\omega}$ be the set of all finite sequences over $|\mathcal{M}|$. We use a, b, c, \ldots to range over finite sequences of elements. If $a \in |\mathcal{M}|^{<\omega}$ and $\sigma \in |\mathcal{M}|$, then $a\sigma$ represents the concatenation of a with σ.

Definition bas.8. Given structures \mathcal{M} and \mathcal{N}, we define relations $I_n \subseteq |\mathcal{M}|^{<\omega} \times |\mathcal{N}|^{<\omega}$ between sequences of equal length, by recursion on n as follows:

1. $I_0(a, b)$ if and only if a and b satisfy the same atomic formulas in \mathcal{M} and \mathcal{N}; i.e., if $s_1(x_i) = a_i$ and $s_2(x_i) = b_i$ and φ is atomic with all variables among x_1, \ldots, x_n, then $\mathcal{M}, s_1 \models \varphi$ if and only if $\mathcal{N}, s_2 \models \varphi$.

2. $I_{n+1}(a, b)$ if and only if for every $a \in A$ there is a $b \in B$ such that $I_n(a\sigma, b\sigma)$, and vice-versa.

Definition bas.9. Write $\mathcal{M} \approx_n \mathcal{N}$ if $I_n(A, A)$ holds of \mathcal{M} and \mathcal{N} (where A is the empty sequence).
Theorem bas.10. Let \(\mathcal{L} \) be a purely relational language. Then \(I_n(a, b) \) implies that for every \(\varphi \) such that \(qr(\varphi) \leq n \), we have \(\mathcal{M}, a \models \varphi \) if and only if \(\mathcal{N}, b \models \varphi \) (where again \(a \) satisfies \(\varphi \) if any \(s \) such that \(s(x_i) = a_i \) satisfies \(\varphi \)). Moreover, if \(\mathcal{L} \) is finite, the converse also holds.

Proof. The proof that \(I_n(a, b) \) implies that \(a \) and \(b \) satisfy the same formulas of quantifier rank no greater than \(n \) is by an easy induction on \(\varphi \). For the converse we proceed by induction on \(n \), using Proposition bas.6, which ensures that for each \(n \) there are at most finitely many non-equivalent formulas of that quantifier rank.

For \(n = 0 \) the hypothesis that \(a \) and \(b \) satisfy the same quantifier-free formulas gives that they satisfy the same atomic ones, so that \(I_0(a, b) \).

For the \(n + 1 \) case, suppose that \(a \) and \(b \) satisfy the same formulas of quantifier rank no greater than \(n + 1 \); in order to show that \(I_{n+1}(a, b) \) suffices to show that for each \(a \in |\mathcal{M}| \) there is a \(b \in |\mathcal{N}| \) such that \(I_n(aa, bb) \), and by the inductive hypothesis again suffices to show that for each \(a \in |\mathcal{M}| \) there is a \(b \in |\mathcal{N}| \) such that \(aa \) and \(bb \) satisfy the same formulas of quantifier rank no greater than \(n \).

Given \(a \in |\mathcal{M}| \), let \(\tau_n^a \) be set of formulas \(\psi(x, y) \) of rank no greater than \(n \) satisfied by \(aa \) in \(\mathcal{M} \); \(\tau_n^a \) is finite, so we can assume it is a single first-order formula. It follows that \(a \) satisfies \(\exists x \tau_n^a(x, y) \), which has quantifier rank no greater than \(n + 1 \). By hypothesis \(b \) satisfies the same formula in \(\mathcal{N} \), so that there is a \(b \in |\mathcal{N}| \) such that \(bb \) satisfies \(\tau_n^a \); in particular, \(bb \) satisfies the same formulas of quantifier rank no greater than \(n \) as \(aa \). Similarly one shows that for every \(b \in |\mathcal{N}| \) there is \(a \in |\mathcal{M}| \) such that \(aa \) and \(bb \) satisfy the same formulas of quantifier rank no greater than \(n \), which completes the proof.

Corollary bas.11. If \(\mathcal{M} \) and \(\mathcal{N} \) are purely relational structures in a finite language, then \(\mathcal{M} \equiv_n \mathcal{N} \) if and only if \(\mathcal{M} \equiv \mathcal{N} \). In particular \(\mathcal{M} \equiv \mathcal{N} \) if and only if for each \(n \), \(\mathcal{M} \equiv_n \mathcal{N} \).

Photo Credits

Bibliography