bas.1 Dense Linear Orders

Definition bas.1. A dense linear ordering without endpoints is a structure \(M \) for the language containing a single 2-place predicate symbol \(< \) satisfying the following sentences:

1. \(\forall x \ x < x \);
2. \(\forall x \ \forall y \ \forall z (x < y \rightarrow (y < z \rightarrow x < z)) \);
3. \(\forall x \ \forall y (x < y \lor x = y \lor y < x) \);
4. \(\forall x \ \exists y x < y \);
5. \(\forall x \ \exists y y < x \);
6. \(\forall x \ \forall y (x < y \rightarrow \exists z (x < z \land z < y)) \).

Theorem bas.2. Any two enumerable dense linear orderings without endpoints are isomorphic.

Proof. Let \(M_1 \) and \(M_2 \) be enumerable dense linear orderings without endpoints, with \(<_1 = <_{M_1} \) and \(<_2 = <_{M_2} \), and let \(I \) be the set of all partial isomorphisms between them. \(I \) is not empty since at least \(\emptyset \in I \). We show that \(I \) satisfies the Back-and-Forth property. Then \(M_1 \simeq_p M_2 \), and the theorem follows by ??.

To show \(I \) satisfies the Forth property, let \(p \in I \) and let \(p(a_i) = b_i \) for \(i = 1, \ldots, n \), and without loss of generality suppose \(a_1 <_1 a_2 <_1 \cdots <_1 a_n \). Given \(a \in \lvert M_1 \rvert \), find \(b \in \lvert M_2 \rvert \) as follows:

1. if \(a <_2 a_1 \) let \(b \in \lvert M_2 \rvert \) be such that \(b <_2 b_1 \);
2. if \(a_n <_1 a \) let \(b \in \lvert M_2 \rvert \) be such that \(b_n <_2 b \);
3. if \(a_i <_1 a <_1 a_{i+1} \) for some \(i \), then let \(b \in \lvert M_2 \rvert \) be such that \(b_i <_2 b <_2 b_{i+1} \).

It is always possible to find a \(b \) with the desired property since \(M_2 \) is a dense linear ordering without endpoints. Define \(q = p \cup \{(a, b)\} \) so that \(q \in I \) is the desired extension of \(p \). This establishes the Forth property. The Back property is similar. So \(M_1 \simeq_p M_2 \); by ??, \(M_1 \simeq M_2 \).

Problem bas.1. Complete the proof of Theorem bas.2 by verifying that \(I \) satisfies the Back property.

Remark 1. Let \(S \) be any enumerable dense linear ordering without endpoints. Then (by Theorem bas.2) \(S \simeq \mathbb{Q} \), where \(\mathbb{Q} = (\mathbb{Q}, <) \) is the enumerable dense linear ordering having the set \(\mathbb{Q} \) of the rational numbers as its domain. Now consider again the structure \(R = (\mathbb{R}, <) \) from ??.. We saw that there is an enumerable structure \(S \) such that \(R \equiv S \). But \(S \) is an enumerable dense linear
ordering without endpoints, and so it is isomorphic (and hence elementarily equivalent) to the structure Ω. By transitivity of elementary equivalence, $\mathcal{R} \equiv \Omega$. (We could have shown this directly by establishing $\mathcal{R} \simeq_p \Omega$ by the same back-and-forth argument.)

Photo Credits

Bibliography