In the principle of induction discussed above, we prove $P(0)$ and also if $P(k)$, then $P(k + 1)$. In the second part, we assume that $P(k)$ is true and use this assumption to prove $P(k+1)$. Equivalently, of course, we could assume $P(k-1)$ and use it to prove $P(k)$—the important part is that we be able to carry out the inference from any number to its successor; that we can prove the claim in question for any number under the assumption it holds for its predecessor.

There is a variant of the principle of induction in which we don’t just assume that the claim holds for the predecessor $k - 1$ of k, but for all numbers smaller than k, and use this assumption to establish the claim for k. This also gives us the claim $P(n)$ for all $n \in \mathbb{N}$. For once we have established $P(0)$, we have thereby established that P holds for all numbers less than 1. And if we know that if $P(l)$ for all $l < k$, then $P(k)$, we know this in particular for $k = 1$. So we can conclude $P(1)$. With this we have proved $P(0)$ and $P(1)$, i.e., $P(l)$ for all $l < 2$, and since we have also the conditional, if $P(l)$ for all $l < 2$, then $P(2)$, we can conclude $P(2)$, and so on.

In fact, if we can establish the general conditional “for all k, if $P(l)$ for all $l < k$, then $P(k)$,” we do not have to establish $P(0)$ anymore, since it follows from it. For remember that a general claim like “for all $l < k$, $P(l)$” is true if there are no $l < k$. This is a case of vacuous quantification: “all As are Bs” is true if there are no As, $\forall x (\varphi(x) \rightarrow \psi(x))$ is true if no x satisfies $\varphi(x)$. In this case, the formalized version would be “$\forall l (l < k \rightarrow P(l))$”—and that is true if there are no $l < k$. And if $k = 0$ that’s exactly the case: no $l < 0$, hence “for all $l < 0$, $P(0)$” is true, whatever P is. A proof of “if $P(l)$ for all $l < k$, then $P(k)$” thus automatically establishes $P(0)$.

This variant is useful if establishing the claim for k can’t be made to just rely on the claim for $k - 1$ but may require the assumption that it is true for one or more $l < k$.