Definition syn.1 (Valuations). Let \(V \) be a set of truth values. A \textit{valuation} for \(\mathcal{L} \) into \(V \) is a function \(v \) assigning an element of \(V \) to the propositional variables of the language, i.e., \(v: \text{At}_0 \to V \).

Definition syn.2. Given a valuation \(v \) into the set of truth values \(V \) of a many-valued logic \(\mathcal{L} \), define the evaluation function \(\overline{v}: \text{Frm}(\mathcal{L}) \to V \) inductively by:

1. \(\overline{v}(p_n) = v(p_n) \);
2. If \(\star \) is a 0-place connective, then \(\overline{v}(\star) = \varepsilon_\mathcal{L} \);
3. If \(\star \) is an \(n \)-place connective, then
 \[
 \overline{v}(\star(\varphi_1, \ldots, \varphi_n)) = \varepsilon_\mathcal{L}(\overline{v}(\varphi_1), \ldots, \overline{v}(\varphi_n)).
 \]

Definition syn.3 (Satisfaction). The formula \(\varphi \) is \textit{satisfied} by a valuation \(v \), \(v \models_\mathcal{L} \varphi \), iff \(\overline{v}_\mathcal{L}(\varphi) \in V^+ \), where \(V^+ \) is the set of designated truth values of \(\mathcal{L} \).

We write \(v \not\models_\mathcal{L} \varphi \) to mean “not \(v \models_\mathcal{L} \varphi \).” If \(\Gamma \) is a set of formulas, \(v \models_\mathcal{L} \Gamma \) iff \(v \models_\mathcal{L} \varphi \) for every \(\varphi \in \Gamma \).

Photo Credits

Bibliography