Many-valued logics as sublogics of C

The usual many-valued logics are all defined using matrices in which the value of a truth-function for arguments in $\{T, F\}$ agrees with the classical truth functions. Specifically, in these logics, if $x \in \{T, F\}$, then $\neg_L(x) = \neg_C(x)$, and for any one of \land, \lor, \rightarrow, if $x, y \in \{T, F\}$, then $\ast_L(x, y) = \ast_C(x, y)$. In other words, the truth functions for $\neg, \land, \lor, \rightarrow$ restricted to $\{T, F\}$ are exactly the classical truth functions.

Proposition syn.1. Suppose that a many-valued logic L contains the connectives $\neg, \land, \lor, \rightarrow$ in its language, $T, F \in V$, and its truth functions satisfy:

1. $\neg_L(x) = \neg_C(x)$ if $x = T$ or $x = F$;
2. $\land_L(x, y) = \land_C(x, y)$,
3. $\lor_L(x, y) = \lor_C(x, y)$,
4. $\rightarrow_L(x, y) = \rightarrow_C(x, y)$, if $x, y \in \{T, F\}$.

Then, for any valuation v into V such that $v(p) \in \{T, F\}$, $v_L(\varphi) = v_C(\varphi)$.

Proof. By induction on φ.

1. If $\varphi \equiv p$ is atomic, we have $v_L(\varphi) = v(p) = v_C(\varphi)$.
2. If $\varphi \equiv \neg B$, we have

 $v_L(\varphi) = \neg_L(v_L(\psi))$
 $= \neg_L(v_C(\psi))$
 $= \neg_C(v_C(\psi))$
 $= v_C(\varphi)$

 by ??

 by inductive hypothesis

 by assumption (1),

 since $v_C(\psi) \in \{T, F\}$,

 by ??.

3. If $\varphi \equiv (\psi \land \chi)$, we have

 $v_L(\varphi) = \land_L(v_L(\psi), v_L(\chi))$
 $= \land_L(v_C(\psi), v_C(\chi))$
 $= \land_C(v_C(\psi), v_C(\chi))$
 $= v_C(\varphi)$

 by ??

 by inductive hypothesis

 by assumption (2),

 since $v_C(\psi), v_C(\chi) \in \{T, F\}$,

 by ??.

The cases where $\varphi \equiv (\psi \lor \chi)$ and $\varphi \equiv (\psi \rightarrow \chi)$ are similar.

Corollary syn.2. If a many-valued logic satisfies the conditions of Proposition syn.1, $T \in V^+$ and $F \not\in V^+$, then $\models_L \psi$ if $\models_C \psi$. In particular, every tautology of L is also a classical tautology.
Proof. We prove the contrapositive. Suppose $\Gamma \nvDash_C \psi$. Then there is some valuation $v: A_{t_0} \to \{T, F\}$ such that $v_C(\varphi) = T$ for all $\varphi \in \Gamma$ and $v_C(\psi) = F$. Since $T, F \in V$, the valuation v is also a valuation for L. By Proposition syn.1, $v_L(\varphi) = T$ for all $\varphi \in \Gamma$ and $v_L(\psi) = F$. Since $T \in V^+$ and $F \notin V^+$ that means $v \models L \Gamma$ and $v \not\models L \psi$, i.e., $\Gamma \nvDash_L \psi$. \qed

Photo Credits

Bibliography