Suppose a many-valued logic L is given by a matrix. Then we can define the usual semantic notions for L.

Definition syn.1.

1. A formula φ is **satisfiable** if for some v, $v \models \varphi$; it is **unsatisfiable** if for no v, $v \not\models \varphi$.
2. A formula φ is a **tautology** if $v \models \varphi$ for all valuations v;
3. If Γ is a set of formulas, $\Gamma \models \varphi$ (“Γ entails φ”) if and only if $v \models \varphi$ for every valuation v for which $v \models \Gamma$.
4. If Γ is a set of formulas, Γ is **satisfiable** if there is a valuation v for which $v \models \Gamma$, and Γ is **unsatisfiable** otherwise.

We have some of the same facts for these notions as we do for the case of classical logic:

Proposition syn.2.

1. φ is a tautology if and only if $\emptyset \models \varphi$;
2. If Γ is satisfiable then every finite subset of Γ is also satisfiable;
3. Monotony: if $\Gamma \subseteq \Delta$ and $\Gamma \models \varphi$ then also $\Delta \models \varphi$;
4. Transitivity: if $\Gamma \models \varphi$ and $\Delta \cup \{\varphi\} \models \psi$ then $\Gamma \cup \Delta \models \psi$;

Proof. Exercise.

Problem syn.1. Prove Proposition syn.2

In classical logic we can connect entailment and the conditional. For instance, we have the validity of **modus ponens**: If $\Gamma \models \varphi$ and $\Gamma \models \varphi \rightarrow \psi$ then $\Gamma \models \psi$. Another important relationship between \models and \rightarrow in classical logic is the semantic deduction theorem: $\Gamma \models \varphi \rightarrow \psi$ if and only if $\Gamma \cup \{\varphi\} \models \psi$. These results do not always hold in many-valued logics. Whether they do depends on the truth function \rightarrow.

Photo Credits

Bibliography