syn.1 Formulas

Definition syn.1 (Formula). The set \(\text{Frm}(\mathcal{L}) \) of formulas of a propositional language \(\mathcal{L} \) is defined inductively as follows:

1. Every propositional variable \(p_i \) is an atomic formula.
2. Every 0-place connective (propositional constant) of \(\mathcal{L} \) is an atomic formula.
3. If \(\ast \) is an \(n \)-place connective of \(\mathcal{L} \), and \(\varphi_1, \ldots, \varphi_n \) are formulas, then \(\ast(\varphi_1, \ldots, \varphi_n) \) is a formula.
4. Nothing else is a formula.

If \(\ast \) is 1-place, then \(\ast(\varphi_1) \) will often be written simply as \(\ast \varphi_1 \). If \(\ast \) is 2-place \(\ast(\varphi_1, \varphi_2) \) will often be written as \((\varphi_1 \ast \varphi_2) \).

As usual, we will often silently leave out the outermost parentheses.

Example syn.2. In the standard language \(\mathcal{L}_0 \), \(p_1 \rightarrow (p_1 \land \neg p_2) \) is a formula. In the language of product logic, it would be written instead as \(p_1 \rightarrow (p_1 \odot \neg p_2) \). If we add the 1-place \(\triangle \) to the language, we would also have formulas such as \(\triangle(p_1 \land p_2) \rightarrow (\triangle p_1 \land \triangle p_2) \).

Photo Credits

Bibliography