
Part I

Many-valued Logic

1

This part contains draft material on propositional many-valued logics.

2 many-valued-logic rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 1

Syntax and Semantics

1.1 Introduction

mvl:syn:int:
sec

In classical logic, we deal with formulas that are built from propositional vari-
ables using the propositional connectives ¬, ∧, ∨, →, and ↔. When we define
a semantics for classical logic, we do so using the two truth values T and F.
We interpret propositional variables in a valuation v, which assigns these truth
values T, F to the propositional variables. Any valuation then determines a
truth value v(φ) for any formula φ, and A formula is satisfied in a valuation v,
v ⊨ φ, iff v(φ) = T.

Many-valued logics are generalizations of classical two-valued logic by allow-
ing more truth values than just T and F. So in many-valued logic, a valuation v
is a function assigning to every propositional variable p one of a range of possible
truth values. We’ll generally call the set of allowed truth values V . Classical
logic is a many-valued logic where V = {T,F}, and the truth value v(φ) is
computed using the familiar characteristic truth tables for the connectives.

Once we add additional truth values, we have more than one natural option
for how to compute v(φ) for the connectives we read as “and,” “or,” “not,” and
“if—then.” So a many-valued logic is determined not just by the set of truth
values, but also by the truth functions we decide to use for each connective.
Once these are selected for a many-valued logic L, however, the truth value
vL(φ) is uniquely determined by the valuation, just like in classical logic. Many-
valued logics, like classical logic, are truth functional.

With this semantic building blocks in hand, we can go on to define the
analogs of the semantic concepts of tautology, entailment, and satisfiability. In
classical logic, a formula is a tautology if its truth value v(φ) = T for any v. In
many-valued logic, we have to generalize this a bit as well. First of all, there is
no requirement that the set of truth values V contains T. For instance, some
many-valued logics use numbers, such as all rational numbers between 0 and 1
as their set of truth values. In such a case, 1 usually plays the rule of T. In
other logics, not just one but several truth values do. So, we require that every
many-valued logic have a set V + of designated values. We can then say that

3

a formula is satisfied in a valuation v, v ⊨L φ, iff vL(φ) ∈ V +. A formula φ is
a tautology of the logic, ⊨L φ, iff v(φ) ∈ V + for any v. And, finally, we say
that φ is entailed by a set of formulas, Γ ⊨L φ, if every valuation that satisfies
all the formulas in Γ also satisfies φ.

1.2 Languages and Connectives

mvl:syn:con:
sec

Classical propositional logic, and many other logics, use a set supply of propo-
sitional constants and connectives. For instance, we use the following as prim-
itives:

1. The propositional constant for falsity ⊥.

2. The propositional constant for truth ⊤.

3. The logical connectives: ¬ (negation), ∧ (conjunction), ∨ (disjunction),
→ (conditional), ↔ (biconditional)

The same connectives are used in many-valued logics as well. However, it is
often useful to include different versions of, say, conjunction, in the same logic,
and that would require different symbols to keep the versions separate. Some
many-valued logics also include connectives that have no equivalent in classical
logic. So, we’ll be a bit more general than usual.

Definition 1.1. A propositional language consists of a set L of connectives.
Each connective ⋆ has an arity ; a connective of arity n is said to be n-place.
Connectives of arity 0 are also called constants; connectives of arity 1 are called
unary, and connectives of arity 2, binary.

Example 1.2. The standard language of propositional logic L0 consists of
the following connectives (with associated arities): ⊥ (0) ¬ (1), ∧ (2), ∨ (2),
→ (2). Most logics we consider will use this language. Some logics by tradition
an convention use different symbols for some connectives. For instance, in
product logic, the conjunction symbol is often ⊙ instead of ∧. Sometimes
it is convenient to add a new operator, e.g., the determinateness operator △
(1-place).

1.3 Formulas

mvl:syn:fml:
sec

Definition 1.3 (Formula). mvl:syn:fml:

defn:formulas

The set Frm(L) of formulas of a propositional
language L is defined inductively as follows:

1. Every propositional variable pi is an atomic formula.

2. Every 0-place connective (propositional constant) of L is an atomic for-
mula.

4 many-valued-logic rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

3. If ⋆ is an n-place connective of L, and φ1, . . . , φn are formulas, then
⋆(φ1, . . . , φn) is a formula.

4. Nothing else is a formula.

If ⋆ is 1-place, then ⋆(φ1) will often be written simply as ⋆φ1. If ⋆ is 2-place
⋆(φ1, φ2) will often be written as (φ1 ⋆ φ2).

As usual, we will often silently leave out the outermost parentheses.

Example 1.4. In the standard language L0, p1 → (p1 ∧ ¬p2) is a formula. In
the language of product logic, it would be written instead as p1 → (p1 ⊙ ¬p2).
If we add the 1-place △ to the language, we would also have formulas such as
△(p1 ∧ p2) → (△p1 ∧△p2).

1.4 Matrices

mvl:syn:mat:
sec

A many-valued logic is defined by its language, its set of truth values V , a subset
of designated truth values, and truth functions for its connective. Together,
these elements are called a matrix.

Definition 1.5 (Matrix).mvl:syn:mat:

defn:matrix

A matrix for the logic L consists of:

1. a set of connectives making up a language L;

2. a set V ̸= ∅ of truth values;

3. a set V + ⊆ V of designated truth values;

4. for each n-place connective ⋆ in L, a truth function ⋆̃ : V n → V . If n = 0,
then ⋆̃ is just an element of V .

Example 1.6. The matrix for classical logic C consists of:

1. The standard propositional language L0 with ⊥, ¬, ∧, ∨, →.

2. The set of truth values V = {T,F}.

3. T is the only designated value, i.e., V + = {T}.

4. For ⊥, we have ⊥̃ = F. The other truth functions are given by the usual
truth tables (see Figure 1.1).

many-valued-logic rev: 6c541de (2024-02-28) by OLP / CC–BY 5

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

¬̃
T F
F T

∧̃ T F
T T F
F F F

∨̃ T F
T T T
F T F

→̃ T F
T T F
F T T

Figure 1.1: Truth functions for classical logic C.

mvl:syn:mat:

fig:tf-CL

1.5 Valuations and Satisfaction

mvl:syn:val:
sec

Definition 1.7 (Valuations). Let V be a set of truth values. A valuation
for L into V is a function v assigning an element of V to the propositional
variables of the language, i.e., v : At0 → V .

Definition 1.8. mvl:syn:val:

defn:pValue

Given a valuation v into the set of truth values V of a many-
valued logic L, define the evaluation function v : Frm(L) → V inductively by:

1. v(pn) = v(pn);

2. If ⋆ is a 0-place connective, then v(⋆) = ⋆̃L;

3. If ⋆ is an n-place connective, then

v(⋆(φ1, . . . , φn)) = ⋆̃L(v(φ1), . . . , v(φn)).

Definition 1.9 (Satisfaction). mvl:syn:val:

defn:satisfaction

The formula φ is satisfied by a valuation v,
v ⊨L φ, iff vL(φ) ∈ V +, where V + is the set of designated truth values of L.

We write v ⊭L φ to mean “not v ⊨L φ.” If Γ is a set of formulas, v ⊨L Γ
iff v ⊨L φ for every φ ∈ Γ .

1.6 Semantic Notions

mvl:syn:sem:
sec

Suppose a many-valued logic L is given by a matrix. Then we can define the
usual semantic notions for L.

Definition 1.10. 1. A formula φ is satisfiable if for some v, v ⊨ φ; it is
unsatisfiable if for no v, v ⊨ φ;

2. A formula φ is a tautology if v ⊨ φ for all valuations v;

3. If Γ is a set of formulas, Γ ⊨ φ (“Γ entails φ”) if and only if v ⊨ φ for
every valuation v for which v ⊨ Γ .

4. If Γ is a set of formulas, Γ is satisfiable if there is a valuation v for which
v ⊨ Γ , and Γ is unsatisfiable otherwise.

We have some of the same facts for these notions as we do for the case of
classical logic:

6 many-valued-logic rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proposition 1.11.mvl:syn:sem:

prop:semanticalfacts

1. φ is a tautology if and only if ∅ ⊨ φ;

2. If Γ is satisfiable then every finite subset of Γ is also satisfiable;

3.mvl:syn:sem:

def:monotonicity

Monotonicity: if Γ ⊆ ∆ and Γ ⊨ φ then also ∆ ⊨ φ;

4.mvl:syn:sem:

def:Cut

Transitivity: if Γ ⊨ φ and ∆ ∪ {φ} ⊨ ψ then Γ ∪∆ ⊨ ψ;

Proof. Exercise.

Problem 1.1. Prove Proposition 1.11

In classical logic we can connect entailment and the conditional. For in-
stance, we have the validity of modus ponens: If Γ ⊨ φ and Γ ⊨ φ→ ψ then
Γ ⊨ ψ. Another important relationship between ⊨ and → in classical logic is
the semantic deduction theorem: Γ ⊨ φ→ψ if and only if Γ ∪ {φ} ⊨ ψ. These
results do not always hold in many-valued logics. Whether they do depends
on the truth function →̃.

1.7 Many-valued logics as sublogics of C

mvl:syn:sub:
sec

The usual many-valued logics are all defined using matrices in which the value
of a truth-function for arguments in {T,F} agrees with the classical truth func-
tions. Specifically, in these logics, if x ∈ {T,F}, then ¬̃L(x) = ¬̃C(x), and for ⋆
any one of ∧, ∨, →, if x, y ∈ {T,F}, then ⋆̃L(x, y) = ⋆̃C(x, y). In other words,
the truth functions for ¬, ∧, ∨, → restricted to {T,F} are exactly the classical
truth functions.

Proposition 1.12.mvl:syn:sub:

prop:mvl-cl

Suppose that a many-valued logic L contains the connec-
tives ¬, ∧, ∨, → in its language, T,F ∈ V , and its truth functions satisfy:

1.mvl:syn:sub:

prop:not

¬̃L(x) = ¬̃C(x) if x = T or x = F;

2.mvl:syn:sub:

prop:land

∧̃L(x, y) = ∧̃C(x, y),

3.mvl:syn:sub:

prop:lor

∨̃L(x, y) = ∨̃C(x, y),

4.mvl:syn:sub:

prop:lif

→̃L(x, y) = →̃C(x, y), if x, y ∈ {T,F}.

Then, for any valuation v into V such that v(p) ∈ {T,F}, vL(φ) = vC(φ).

Proof. By induction on φ.

1. If φ ≡ p is atomic, we have vL(φ) = v(p) = vC(φ).

many-valued-logic rev: 6c541de (2024-02-28) by OLP / CC–BY 7

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

2. If φ ≡ ¬B, we have

vL(φ) = ¬̃L(vL(ψ)) by Definition 1.8

= ¬̃L(vC(ψ)) by inductive hypothesis

= ¬̃C(vC(ψ)) by assumption (1),

since vC(ψ) ∈ {T,F},

= vC(φ) by Definition 1.8.

3. If φ ≡ (ψ ∧ χ), we have

vL(φ) = ∧̃L(vL(ψ), vL(χ)) by Definition 1.8

= ∧̃L(vC(ψ), vC(χ)) by inductive hypothesis

= ∧̃C(vC(ψ), vC(χ)) by assumption (2),

since vC(ψ), vC(χ) ∈ {T,F},

= vC(φ) by Definition 1.8.

The cases where φ ≡ (ψ ∨ χ) and φ ≡ (ψ→ χ) are similar.

Corollary 1.13. If a many-valued logic satisfies the conditions of Proposi-
tion 1.12, T ∈ V + and F /∈ V +, then ⊨L ⊆ ⊨C, i.e., if Γ ⊨L ψ then Γ ⊨C ψ.
In particular, every tautology of L is also a classical tautology.

Proof. We prove the contrapositive. Suppose Γ ⊭C ψ. Then there is some
valuation v : At0 → {T,F} such that vC(φ) = T for all φ ∈ Γ and vC(ψ) = F.
Since T,F ∈ V , the valuation v is also a valuation for L. By Proposition 1.12,
vL(φ) = T for all φ ∈ Γ and vL(ψ) = F. Since T ∈ V + and F /∈ V + that
means v ⊨L Γ and v ⊭L ψ, i.e., Γ ⊭L ψ.

8 many-valued-logic rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 2

Three-valued Logics

2.1 Introduction

mvl:thr:int:
sec

If we just add one more value U to T and F, we get a three-valued logic. Even
though there is only one more truth value, the possibilities for defining the
truth-functions for ¬, ∧, ∨, and → are quite numerous. Then a logic might use
any combination of these truth functions, and you also have a choice of making
only T designated, or both T and U.

We present here a selection of the most well-known three-valued logics, their
motivations, and some of their properties.

2.2 Lukasiewicz logic

mvl:thr:luk:
sec

One of the first published, worked out proposals for a many-valued logic is due
to the Polish philosopher Jan Lukasiewicz in 1921. Lukasiewicz was motivated
by Aristotle’s sea battle problem: It seems that, today, the sentence “There
will be a sea battle tomorrow” is neither true nor false: its truth value is not
yet settled. Lukasiewicz proposed to introduce a third truth value, to such
“future contingent” sentences.

I can assume without contradiction that my presence in Warsaw
at a certain moment of next year, e.g., at noon on 21 December,
is at the present time determined neither positively nor negatively.
Hence it is possible, but not necessary, that I shall be present in
Warsaw at the given time. On this assumption the proposition “I
shall be in Warsaw at noon on 21 December of next year,” can at
the present time be neither true nor false. For if it were true now,
my future presence in Warsaw would have to be necessary, which is
contradictory to the assumption. If it were false now, on the other
hand, my future presence in Warsaw would have to be impossible,
which is also contradictory to the assumption. Therefore the propo-
sition considered is at the moment neither true nor false and must
possess a third value, different from “0” or falsity and “1” or truth.

9

This value we can designate by “1
2 .” It represents “the possible,”

and joins “the true” and “the false” as a third value.

We will use U for Lukasiewicz’s third truth value.1

The truth functions for the connectives ¬, ∧, and ∨ are easy to determine on
this interpretation: the negation of a future contingent sentence is also a future
contingent sentence, so ¬̃(U) = U. If one conjunct of a conjunction is undeter-
mined and the other is true, the conjunction is also undetermined—after all,
depending on how the future contingent conjunct turns out, the conjunction
might turn out to be true, and it might turn out to be false. So

∧̃(T,U) = ∧̃(U,T) = U.

If the other conjunct is false, however, it cannot turn out true, so

∧̃(F,U) = ∧̃(F,U) = F.

The other values (if the arguments are settled truth values, T or F, are like in
classical logic.

For the conditional, the situation is a little trickier. Suppose q is a future
contingent statement. If p is false, then p→ q will be true, regardless of how
q turns out, so we should set →̃(F,U) = T. And if p is true, then q→ p will
be true, regardless of what q turns out to be, so →̃(U,T) = T. If p is true,
then p→ q might turn out to be true or false, so →̃(T,U) = U. Similarly, if p
is false, then q→ p might turn out to be true or false, so →̃(U,F) = U. This
leaves the case where p and q are both future contingents. On the basis of the
motivation, we should really assign U in this case. However, this would make
φ→ φ not a tautology. Lukasiewicz had not trouble giving up φ ∨ ¬φ and
¬(φ ∧ ¬φ), but balked at giving up φ→ φ. So he stipulated →̃(U,U) = T.

Definition 2.1. mvl:thr:luk:

def:lukasiewicz

Three-valued Lukasiewicz logic is defined using the matrix:

1. The standard propositional language L0 with ¬, ∧, ∨, →.

2. The set of truth values V = {T,U,F}.

3. T is the only designated value, i.e., V + = {T}.

4. Truth functions are given by the following tables:

¬̃
T F
U U
F T

∧̃ L3 T U F
T T U F
U U U F
F F F F

∨̃ L3
T U F

T T T T
U T U U
F T U F

→̃ L3
T U F

T T U F
U T T U
F T T T

1 Lukasiewicz here uses “possible” in a way that is uncommon today, namely to mean
possible but not necessary.

10 many-valued-logic rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

As can easily be seen, any formula φ containing only ¬, ∧, and ∨ will
take the truth value U if all its propositional variables are assigned U. So for
instance, the classical tautologies p ∨ ¬p and ¬(p ∧ ¬p) are not tautologies in
 L3, since v(φ) = U whenever v(p) = U.

On valuations where v(p) = T or F, v(φ) will coincide with its classical
truth value.

Proposition 2.2. If v(p) ∈ {T,F} for all p in φ, then v L3(φ) = vC(φ).

Problem 2.1. Suppose we define v(φ↔ ψ) = v((φ→ ψ) ∧ (ψ → φ)) in L3.
What truth table would ↔ have?

Many classical tautologies are also tautologies in L3, e.g, ¬p→(p→q). Just
like in classical logic, we can use truth tables to verify this:

p q ¬ p → (p → q)
T T F T T T T T
T U F T T T U U
T F F T T T F F
U T U U T U T T
U U U U T U T U
U F U U T U U F
F T T F T F T T
F U T F T F T U
F F T F T F T F

Problem 2.2. Show that the following are tautologies in L3:

1. p→ (q→ p)

2. ¬(p ∧ q) ↔ (¬p ∨ ¬q)

3. ¬(p ∨ q) ↔ (¬p ∧ ¬q)

(In (2) and (3), take φ↔ ψ as an abbreviation for (φ→ ψ) ∧ (ψ→ φ), or refer
to your solution to Problem 2.1.)

Problem 2.3. Show that the following classical tautologies are not tautologies
in L3:

1. (¬p ∧ p) → q)

2. ((p→ q) → p) → p

3. (p→ (p→ q)) → (p→ q)

One might therefore perhaps think that although not all classical tautologies
are tautologies in L3, they should at least take either the value T or the value U
on every valuation. This is not the case. A counterexample is given by

¬(p→¬p) ∨ ¬(¬p→ p)

which is F if p is U.

many-valued-logic rev: 6c541de (2024-02-28) by OLP / CC–BY 11

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Problem 2.4. Which of the following relations hold in Lukasiewicz logic?
Give a truth table for each.

1. p, p→ q ⊨ q

2. ¬¬p ⊨ p

3. p ∧ q ⊨ p

4. p ⊨ p ∧ p

5. p ⊨ p ∨ q

 Lukasiewicz hoped to build a logic of possibility on the basis of his three-
valued system, by introducing a one-place connective ♢φ (for “φ is possible”)
and a corresponding □φ (for “φ is necessary”):

♢̃
T T
U T
F F

□̃
T T
U F
F F

In other words, p is possible iff it is not already settled as false; and p is
necessary iff it is already settled as true.

Problem 2.5. Show that □p↔¬♢¬p and ♢p↔¬□¬p are tautologies in L3,
extended with the truth tables for □ and ♢.

However, the shortcomings of this proposed modal logic soon became ev-
ident: However things turn out, p ∧ ¬p can never turn out to be true. So
even if it is not now settled (and therefore undetermined), it should count as
impossible, i.e., ¬♢(p ∧ ¬p) should be a tautology. However, if v(p) = U, then
v(¬♢(p ∧ ¬p)) = U. Although Lukasiewicz was correct that two truth values
will not be enough to accommodate modal distinctions such as possiblity and
necessity, introducing a third truth value is also not enough.

2.3 Kleene logics

mvl:thr:skl:
sec

Stephen Kleene introduced two three-valued logics motivated by a logic in
which truth values are thought of the outcomes of computational procedures:
a procedure may yield T or F, but it may also fail to terminate. In that case
the corresponding truth value is undefined, represented by the truth value U.

To compute the negation of a proposition φ, you would first compute the
value of φ, and then return the opposite of the result. If the computation of φ
does not terminate, then the entire procedure does not either: so the negation
of U is U.

To compute a conjunction φ ∧ ψ, there are two options: one can first com-
pute φ, then ψ, and then the result would be T if the outcome of both is T,

12 many-valued-logic rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

and F otherwise. If either computation fails to halt, the entire procedure does
as well. So in this case, the if one conjunct is undefined, the conjunction is as
well. The same goes for disjunction.

However, if we can evaluate φ and ψ in parallel, we can do better. Then, if
one of the two procedures halts and returns F, we can stop, as the answer must
be false. So in that case a conjunction with one false conjunct is false, even
if the other conjunct is undefined. Similarly, when computing a disjunction
in parallel, we can stop once the procedure for one of the two disjuncts has
returned true: then the disjunction must be true. So in this case we can know
what the outcome of a compound claim is, even if one of the components is
undefined. On this interpretation, we might read U as “unknown” rather than
“undefined.”

The two interpretations give rise to Kleene’s strong and weak logic. The
conditional is defined as equivalent to ¬φ ∨ ψ.

Definition 2.3. Strong Kleene logic Ks is defined using the matrix:

1. The standard propositional language L0 with ¬, ∧, ∨, →.

2. The set of truth values V = {T,U,F}.

3. T is the only designated value, i.e., V + = {T}.

4. Truth functions are given by the following tables:

¬̃
T F
U U
F T

∧̃Ks T U F
T T U F
U U U F
F F F F

∨̃Ks T U F
T T T T
U T U U
F T U F

→̃Ks T U F
T T U F
U T U U
F T T T

Definition 2.4. Weak Kleene logic Kw is defined using the matrix:

1. The standard propositional language L0 with ¬, ∧, ∨, →.

2. The set of truth values V = {T,U,F}.

3. T is the only designated value, i.e., V + = {T}.

4. Truth functions are given by the following tables:

¬̃
T F
U U
F T

∧̃Kw T U F
T T U F
U U U U
F F U F

many-valued-logic rev: 6c541de (2024-02-28) by OLP / CC–BY 13

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

∨̃Kw T U F
T T U T
U U U U
F T U F

→̃Kw T U F
T T U F
U U U U
F T U T

Proposition 2.5. Ks and Kw have no tautologies.

Proof. If v(p) = U for all propositional variables p, then any formula φ will
have truth value v(φ) = U, since

¬̃(U) = ∨̃(U,U) = ∧̃(U,U) = →̃(U,U) = U

in both logics. As U /∈ V + for either Ks or Kw, on this valuation, φ will not
be designated.

Although both weak and strong Kleene logic have no tautologies, they have
non-trivial consequence relations.

Problem 2.6. Which of the following relations hold in (a) strong and (b) weak
Kleene logic? Give a truth table for each.

1. p, p→ q ⊨ q

2. p ∨ q,¬p ⊨ q

3. p ∧ q ⊨ p

4. p ⊨ p ∧ p

5. p ⊨ p ∨ q

Dmitry Bochvar interpreted U as “meaningless” and attempted to use it
to solve paradoxes such as the Liar paradox by stipulating that paradoxical
sentences take the value U. He introduced a logic which is essentially weak
Kleene logic extended by additional connectives, two of which are “external
negation” and the “is undefined” operator:

∼̃
T F
U T
F T

+̃
T F
U T
F F

Problem 2.7. Can you define ∼ in Bochvar’s logic in terms of ¬ and +, i.e.,
find a formula with only the propositional variable p and not involving ∼ which
always takes the same truth value as ∼p? Give a truth table to show you’re
right.

14 many-valued-logic rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

2.4 Gödel logics

mvl:thr:god:
sec

Kurt Gödel introduced a sequence of n-valued logics that each contain all
formulas valid in intuitionistic logic, and are contained in classical logic. Here
is the first interesting one:

Definition 2.6.mvl:thr:god:

defn:goedel

3-valued Gödel logic G is defined using the matrix:

1. The standard propositional language L0 with ⊥, ¬, ∧, ∨, →.

2. The set of truth values V = {T,U,F}.

3. T is the only designated value, i.e., V + = {T}.

4. For ⊥, we have ⊥̃ = F. Truth functions for the remaining connectives
are given by the following tables:

¬̃G

T F
U F
F T

∧̃G T U F
T T U F
U U U F
F F F F

∨̃G T U F
T T T T
U T U U
F T U F

→̃G T U F
T T U F
U T T F
F T T T

You’ll notice that the truth tables for ∧ and ∨ are the same as in Lukasiewicz
and strong Kleene logic, but the truth tables for ¬ and → differ for each. In
Gödel logic, ¬̃(U) = F. In contrast to Lukasiewicz logic and Kleene logic,
→̃(U,F) = F; in contrast to Kleene logic (but as in Lukasiewicz logic), →̃(U,U) =
T.

As the connection to intuitionistic logic alluded to above suggests, G3 is
close to intuitionistic logic. All intuitionistic truths are tautologies in G3, and
many classical tautologies that are not valid intuitionistically also fail to be
tautologies in G3. For instance, the following are not tautologies:

p ∨ ¬p (p→ q) → (¬p ∨ q)
¬¬p→ p ¬(¬p ∧ ¬q) → (p ∨ q)
((p→ q) → p) → p ¬(p→ q) → (p ∧ ¬q)

However, not every tautology of G3 is also intuitionistically valid, e.g., ¬¬p∨¬p
or (p→ q) ∨ (q→ p).

many-valued-logic rev: 6c541de (2024-02-28) by OLP / CC–BY 15

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Problem 2.8. Give truth tables to show that the following are tautologies
of G3:

¬¬p ∨ ¬p
(p→ q) ∨ (q→ p)

¬(p ∧ q) → (¬p ∨ ¬q)
(p→ q) ∨ (q→ r) ∨ (r→ s)

Problem 2.9. Give truth tables that show that the following are not tautolo-
gies of G3

(p→ q) → (¬p ∨ q)
¬(¬p ∧ ¬q) → (p ∨ q)
((p→ q) → p) → p

¬(p→ q) → (p ∧ ¬q)

Problem 2.10. Which of the following relations hold in Gödel logic? Give a
truth table for each.

1. p, p→ q ⊨ q

2. p ∨ q,¬p ⊨ q

3. p ∧ q ⊨ p

4. p ⊨ p ∧ p

5. p ⊨ p ∨ q

2.5 Designating not just T

mvl:thr:mul:
sec

So far the logics we’ve seen all had the set of designated truth values V + = {T},
i.e., something counts as true iff its truth value is T. But one might also count
something as true if it’s just not F. Then one would get a logic by stipulating
in the matrix, e.g., that V + = {T,U}.

Definition 2.7. The logic of paradox LP is defined using the matrix:

1. The standard propositional language L0 with ¬, ∧, ∨, →.

2. The set of truth values V = {T,U,F}.

3. T and U are designated, i.e., V + = {T,U}.

4. Truth functions are the same as in strong Kleene logic.

Definition 2.8. Halldén’s logic of nonsense Hal is defined using the matrix:

16 many-valued-logic rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

1. The standard propositional language L0 with ¬, ∧, ∨, → and a 1-place
connective +.

2. The set of truth values V = {T,U,F}.

3. T and U are designated, i.e., V + = {T,U}.

4. Truth functions are the same as weak Kleene logic, plus the “is meaning-
less” operator:

+̃
T F
U T
F F

By contrast to the Kleene logics with which they share truth tables, these
do have tautologies.

Proposition 2.9.mvl:thr:mul:

prop:LP-taut-CL

The tautologies of LP are the same as the tautologies of
classical propositional logic.

Proof. By Proposition 1.12, if ⊨LP φ then ⊨C φ. To show the reverse, we
show that if there is a valuation v : At0 → {F,T,U} such that vKs(φ) = F then
there is a valuation v′ : At0 → {F,T} such that v′C(φ) = F. This establishes
the result for LP, since Ks and LP have the same characteristic truth func-
tions, and F is the only truth value of LP that is not designated (that is the
only difference between LP and Ks). Thus, if ⊭LP φ, for some valuation v,
vLP(φ) = vKs(φ) = F. By the claim we’re proving, v′C(φ) = F, i.e., ⊭C φ.

To establish the claim, we first define v′ as

v′(p) =

{
T if v(p) ∈ {T,U}
F otherwise

We now show by induction on φ that (a) if vKs(φ) = F then v′C(φ) = F, and
(b) if vKs(φ) = T then v′C(φ) = T

1. Induction basis: φ ≡ p. By Definition 1.8, vKs(φ) = v(p) = v′C(φ),
which implies both (a) and (b).

For the induction step, consider the cases:

2. φ ≡ ¬ψ.

a) Suppose vKs(¬ψ) = F. By the definition of ¬̃Ks, vKs(ψ) = T. By
inductive hypothesis, case (b), we get v′C(ψ) = T, so v′C(¬ψ) = F.

b) Suppose vKs(¬ψ) = T. By the definition of ¬̃Ks, vKs(ψ) = F. By
inductive hypothesis, case (a), we get v′C(ψ) = F, so v′C(¬ψ) = T.

3. φ ≡ (ψ ∧ χ).

many-valued-logic rev: 6c541de (2024-02-28) by OLP / CC–BY 17

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

a) Suppose vKs(ψ ∧ χ) = F. By the definition of ∧̃Ks, vKs(ψ) = F or
vKs(ψ) = F. By inductive hypothesis, case (a), we get v′C(ψ) = F
or v′C(χ) = F, so v′C(ψ ∧ χ) = F.

b) Suppose vKs(ψ∧χ) = T. By the definition of ∧̃Ks, vKs(ψ) = T and
vKs(ψ) = T. By inductive hypothesis, case (b), we get v′C(ψ) = T
and v′C(χ) = T, so v′C(ψ ∧ χ) = T.

The other two cases are similar, and left as exercises. Alternatively, the
proof above establishes the result for all formulas only containing ¬ and ∧.
One may now appeal to the facts that in both Ks and C, for any v, v(ψ∨χ) =
v(¬(¬ψ ∧ ¬χ)) and v(ψ→ χ) = v(¬(ψ ∧ ¬χ)).

Problem 2.11. Complete the proof Proposition 2.9, i.e., establish (a) and (b)
for the cases where φ ≡ (ψ ∨ χ) and φ ≡ (ψ→ χ).

Problem 2.12. Prove that every classical tautology is a tautology in Hal.

Although they have the same tautologies as classical logic, their consequence
relations are different. LP, for instance, is paraconsistent in that ¬p, p ⊭ q,
and so the principle of explosion ¬φ,φ ⊨ ψ does not hold in general. (It holds
for some cases of φ and ψ, e.g., if ψ is a tautology.)

Problem 2.13. Which of the following relations hold in (a) LP and in (b) Hal?
Give a truth table for each.

1. p, p→ q ⊨ q

2. ¬q, p→ q ⊨ ¬p

3. p ∨ q,¬p ⊨ q

4. ¬p, p ⊨ q

5. p ⊨ p ∨ q

6. p→ q, q→ r ⊨ p→ r

What if you make U designated in L3?

Definition 2.10. The logic 3-valued R-Mingle RM3 is defined using the ma-
trix:

1. The standard propositional language L0 with ⊥, ¬, ∧, ∨, →.

2. The set of truth values V = {T,U,F}.

3. T and U are designated, i.e., V + = {T,U}.

4. Truth functions are the same as Lukasiewicz logic L3.

Problem 2.14. Which of the following relations hold in RM3?

18 many-valued-logic rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

1. p, p→ q ⊨ q

2. p ∨ q,¬p ⊨ q

3. ¬p, p ⊨ q

4. p ⊨ p ∨ q

Different truth tables can sometimes generate the same logic (entailment
relation) just by changing the designated values. E.g., this happens if in Gödel
logic we take V + = {T,U} instead of {T}.

Proposition 2.11.mvl:thr:mul:

prop:gl-udes

The matrix with V = {F,U,T}, V + = {T,U}, and the
truth functions of 3-valued Gödel logic defines classical logic.

Proof. Exercise.

Problem 2.15. Prove Proposition 2.11 by showing that for the logic L defined
just like Gödel logic but with V + = {T,U}, if Γ ⊭L ψ then Γ ⊭C ψ. Use the
ideas of Proposition 2.9, except instead of proving properties (a) and (b), show
that vG(φ) = F iff v′C(φ) = F (and hence that vG(φ) ∈ {T,U} iff v′C(φ) = T).
Explain why this establishes the proposition.

many-valued-logic rev: 6c541de (2024-02-28) by OLP / CC–BY 19

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 3

Infinite-valued Logics

3.1 Introduction

mvl:inf:int:
sec

The number of truth values of a matrix need not be finite. An obvious choice
for a set of infinitely many truth values is the set of rational numbers between
0 and 1, V∞ = [0, 1] ∩Q, i.e.,

V∞ = { n
m

: n,m ∈ N and n ≤ m}.

When considering this infinite truth value set, it is often useful to also consider
the subsets

Vm = { n

m− 1
: n ∈ N and n ≤ m}

For instance, V5 is the set with 5 evenly spaced truth values,

V5 = {0,
1

4
,

1

2
,

3

4
, 1}.

In logics based on these truth value sets, usually only 1 is designated, i.e.,
V + = {1}. In other words, we let 1 play the role of (absolute) truth, 0 as
absolute falsity, but formulas may take any intermediate value in V .

One can also consider the set V[0,1] = [0, 1] of all real numbers between 0
and 1, or other infinite subsets of [0, 1], however. Logics with this truth value
set are often called fuzzy.

3.2 Lukasiewicz logic

mvl:inf:luk:
sec

This is a short “stub” of a section on infinite-valued Lukasiewicz logic.

20

Definition 3.1.mvl:inf:luk:

def:lukasiewicz

Infinite-valued Lukasiewicz logic L∞ is defined using the ma-
trix:

1. The standard propositional language L0 with ¬, ∧, ∨, →.

2. The set of truth values V∞.

3. 1 is the only designated value, i.e., V + = {1}.

4. Truth functions are given by the following functions:

¬̃ L(x) = 1 − x

∧̃ L(x, y) = min(x, y)

∨̃ L(x, y) = max(x, y)

→̃ L(x, y) = min(1, 1 − (x− y)) =

{
1 if x ≤ y

1 − (x− y) otherwise.

m-valued Lukasiewicz logic is defined the same, except V = Vm.

Proposition 3.2. The logic L3 defined by Definition 2.1 is the same as L3

defined by Definition 3.1.

Proof. This can be seen by comparing the truth tables for the connectives
given in Definition 2.1 with the truth tables determined by the equations in
Definition 3.1:

¬̃
1 0

1/2 1/2
0 1

∧̃ L3
1 1/2 0

1 1 1/2 0
1/2 1/2 1/2 0
0 0 0 0

∨̃ L3 1 1/2 0
1 1 1 1

1/2 1 1/2 1/2
0 1 1/2 0

→̃ L3 1 1/2 0
1 1 1/2 0

1/2 1 1 1/2
0 1 1 1

Proposition 3.3.mvl:inf:luk:

prop:luk-infty-m

If Γ ⊨ L∞ ψ then Γ ⊨ Lm
ψ for all m ≥ 2.

Proof. Exercise.

Problem 3.1. Prove Proposition 3.3.

In fact, the converse holds as well.
Infinite-valued Lukasiewicz logic is the most popular fuzzy logic. In the

fuzzy logic literature, the conditional is often defined as ¬φ ∨ ψ. The result
would be an infinite-valued strong Kleene logic.

Problem 3.2. Show that (p→ q) ∨ (q→ p) is a tautology of L∞.

many-valued-logic rev: 6c541de (2024-02-28) by OLP / CC–BY 21

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

3.3 Gödel logics

mvl:inf:god:
sec

This is a short “stub” of a section on infinite-valued Gödel logic.

Definition 3.4. mvl:inf:god:

def:goedel

Infinite-valued Gödel logic G∞ is defined using the matrix:

1. The standard propositional language L0 with ⊥, ¬, ∧, ∨, →.

2. The set of truth values V∞.

3. 1 is the only designated value, i.e., V + = {1}.

4. Truth functions are given by the following functions:

⊥̃ = 0

¬̃G(x) =

{
1 if x = 0

0 otherwise

∧̃G(x, y) = min(x, y)

∨̃G(x, y) = max(x, y)

→̃G(x, y) =

{
1 if x ≤ y

y otherwise.

m-valued Gödel logic is defined the same, except V = Vm.

Proposition 3.5. The logic G3 defined by Definition 2.6 is the same as G3

defined by Definition 3.4.

Proof. This can be seen by comparing the truth tables for the connectives
given in Definition 2.6 with the truth tables determined by the equations in
Definition 3.4:

¬̃G3

1 0
1/2 0
0 1

∧̃G 1 1/2 0
1 1 1/2 0

1/2 1/2 1/2 0
0 0 0 0

∨̃G 1 1/2 0
1 1 1 1

1/2 1 1/2 1/2
0 1 1/2 0

→̃G 1 1/2 0
1 1 1/2 0

1/2 1 1 0
0 1 1 1

Proposition 3.6. mvl:inf:god:

prop:god-infty-m

If Γ ⊨G∞ ψ then Γ ⊨Gm
ψ for all m ≥ 2.

22 many-valued-logic rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proof. Exercise.

Problem 3.3. Prove Proposition 3.6.

In fact, the converse holds as well.
Like G3, G∞ has all intuitionistically valid formulas as tautologies, and the

same examples of non-tautologies are non-tautologies of G∞:

p ∨ ¬p (p→ q) → (¬p ∨ q)
¬¬p→ p ¬(¬p ∧ ¬q) → (p ∨ q)
((p→ q) → p) → p ¬(p→ q) → (p ∧ ¬q)

The example of an intuitionistically invalid formula that is nevertheless a tau-
tology of G3, (p→ q)∨ (q→ p), is also a tautology in G∞. In fact, G∞ can be
characterized as intuitionistic logic to which the schema (φ→ ψ) ∨ (ψ→ φ) is
added. This was shown by Michael Dummett, and so G∞ is often referred to
as Gödel–Dummett logic LC.

Problem 3.4. Show that (p→ q) ∨ (q→ p) is a tautology of G∞.

Problem 3.5. Show that (p→ q) ∨ (q→ r) ∨ (r→ s), which is a tautology of
G3, is not a tautology of G∞.

many-valued-logic rev: 6c541de (2024-02-28) by OLP / CC–BY 23

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Chapter 4

Sequent Calculus

4.1 Introduction

mvl:seq:int:
sec

The sequent calculus for classical logic is an efficient and simple derivation
system. If a many-valued logic is defined by a matrix with finitely many truth
values, i.e., V is finite, it is possible to provide a sequent calculus for it. The
idea for how to do this comes from considering the meanings of sequents and
the form of inference rules in the classical case.

Now recall that a sequent

φ1, . . . , φn ⇒ ψ1, . . . , ψn

can be interpreted as the formula

(φ1 ∧ · · · ∧ φm) → (ψ1 ∨ · · · ∨ ψn)

In other words, A valuation v satisfies a sequent Γ ⇒ ∆ iff either v(φ) = F
for some φ ∈ Γ or v(φ) = T for some φ ∈ ∆. On this interpretation, initial
sequents φ⇒ φ are always satisfied, because either v(φ) = T or (φ) = F.

Here are the inference rules for the conditional in LK, with side formulas
Γ , ∆ left out:

⇒ φ ψ ⇒
→L

φ→ ψ ⇒
φ ⇒ ψ

→R⇒ φ→ ψ

If we apply the above semantic interpretation of a sequent, we can read the
→L rule as saying that if v(φ) = T and v(ψ) = F, then v(φ→ψ) = F. Similarly,
the →R rule says that if either v(φ) = F or v(ψ) = T, then v(φ→ ψ) = T.
And in fact, these conditionals are actually biconditionals. In the case of the
∧L and ∨R rules in their standard formulation, the corresponding conditionals
would not be biconditionals. But there are alternative versions of these rules
where they are:

24

φ,ψ, Γ ⇒ ∆
∧L

φ ∧ ψ, Γ ⇒ ∆

Γ ⇒ ∆,φ, ψ
∨R

Γ ⇒ ∆,φ ∨ ψ

This basic idea, applied to an n-valued logic, then results in a sequent
calculus with n instead of two places, one for each truth value. For a three-
valued logic with V = {F,U,T}, a sequent is an expression Γ | Π | ∆. It
is satisfied in a valuation v iff either v(φ) = F for some φ ∈ Γ or v(φ) = T
for some φ ∈ ∆ or v(φ) = U for some φ ∈ Π. Consequently, initial sequents
φ | φ | φ are always satisfied.

4.2 Rules and Derivations

mvl:seq:rul:
sec

For the following, let Γ,∆,Π,Λ represent finite sequences of sentences.

Definition 4.1 (Sequent). An n-sided sequent is an expression of the form

Γ1 | . . . | Γn

where each Γ1 is a finite (possibly empty) sequences of sentences of the lan-
guage L.

Definition 4.2 (Initial Sequent). An n-sided initial sequent is an n-sided
sequent of the form φ | . . . | φ for any sentence φ in the language.

If the language contains a 0-place connective ⋆, i.e., a propositional constant,
then we also take the sequent . . . | ⋆ | . . . where ⋆ appears in the space for the
truth value associated with ⋆̃ ∈ V , and is empty otherwise.

For each connective of an n-valued logic L, there is a logical rule for each
truth value that this connective can take in L. Derivations in an n-sided
sequent calculus for L are trees of sequents, where the topmost sequents are
initial sequents, and if a sequent stands below one or more other sequents, it
must follow correctly by a rule of inference for the connectives of L.

Definition 4.3 (Theorems). A sentence φ is a theorem of an n-valued logic L
if there is a derivation of the n-sequent containing φ in each position corre-
sponding to a designated truth value of L. We write ⊢L φ if φ is a theorem
and ⊬L φ if it is not.

Definition 4.4 (Derivability). A sentence φ is derivable from a set of sen-
tences Γ in an n-valued logic L, Γ ⊢L φ, iff there is a finite subset Γ0 ⊆ Γ
and a sequence Γ ′

0 of the sentences in Γ0 such that the following sequent has
a derivation:

Λ1 | . . . | Λn

where Λi is φ if position i corresponds to a designated truth value, and Γ ′
0otherwise.

If φ is not derivable from Γ we write Γ ⊬ φ.

many-valued-logic rev: 6c541de (2024-02-28) by OLP / CC–BY 25

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

For instance, 3-valued Lukasiewicz logic has a 3-sided sequent calculus. In
a 3-sided sequent Γ | Π | ∆, Γ corresponds to F, ∆ to T, and Π to U. Axioms
are φ | φ | φ. Since only T is designated, Γ ⊢ L3

φ iff the sequent Γ | Γ | φ
has a derivation. (If U were also designated, we would need a derivation of
Γ | φ | φ.)

4.3 Structural Rules

mvl:seq:str:
sec

The structural rules for n-sided sequent calculus operate as in the classical case,
except for each position i.

Γ1 | . . . | Γi | . . . | Γn
Wi

Γ1 | . . . | φ, Γi | . . . | Γn

Γ1 | . . . | φ,φ, Γi | . . . | Γn
Ci

Γ1 | . . . | φ, Γi | . . . | Γn

Γ1 | . . . | Γi, φ, ψ, Γ
′
i | . . . | Γn

Xi
Γ1 | . . . | Γi, ψ, φ, Γ

′
i | . . . | Γn

A series of weakening, contraction, and exchange inferences will often be
indicated by double inference lines.

The Cut rule comes in several forms, one for every combination of distinct
positions in the sequent i ̸= j:

Γ1 | . . . | φ, Γi | . . . | Γn ∆1 | . . . | φ,∆j | . . . | ∆n
Cuti, j

Γ1, ∆1 | . . . | Γn, ∆n

4.4 Propositional Rules for Selected Logics

mvl:seq:prl:
sec

The inference rules for a connective in an n-sided sequent calculus only depend
on the characteristic truth function for the connective. Thus, if some connective
is defined by the same truth function in different logics, these n-sided sequent
rules for the connective are the same in those logics.

Rules for ¬

The following rules for ¬ apply to Lukasiewicz and Kleene logics, and their
variants.

26 many-valued-logic rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Γ | Π | ∆,φ
¬F¬φ, Γ | Π | ∆

Γ | φ,Π | ∆
¬U

Γ | ¬φ,Π | ∆

φ,Γ | Π | ∆
¬T

Γ | Π | ∆,¬φ

The following rules for ¬ apply to Gödel logic.

Γ | φ,Π | ∆,φ
¬GF

¬φ, Γ | Π | ∆
φ,Γ | Π | ∆

¬GT
Γ | Π | ∆,¬φ

(In Gödel logic, ¬φ can never take the value U, so there is no rule for the
middle position.)

Rules for ∧

These are the rules for ∧ in Lukasiewicz, strong Kleene, and Gödel logic.

φ,ψ, Γ | Π | ∆
∧F

φ ∧ ψ, Γ | Π | ∆

Γ | φ,Π | φ,∆ Γ | ψ,Π | ψ,∆ Γ | φ,ψ,Π | ∆
∧U

Γ | φ ∧ ψ,Π | ∆

Γ | Π | ∆,φ Γ | Π | ∆,ψ
∧T

Γ | Π | ∆,φ ∧ ψ

Rules for ∨

These are the rules for ∨ in Lukasiewicz, strong Kleene, and Gödel logic.

φ, Γ | Π | ∆ ψ,Γ | Π | ∆
∨F

φ ∨ ψ, Γ | Π | ∆

many-valued-logic rev: 6c541de (2024-02-28) by OLP / CC–BY 27

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

φ, Γ | φ,Π | ∆ ψ,Γ | ψ,Π | ∆ Γ | φ,ψ,Π | ∆
∨U

Γ | φ ∨ ψ,Π | ∆

Γ | Π | ∆,φ, ψ
∨T

Γ | Π | ∆,φ ∨ ψ

Rules for →
These are the rules for → in Lukasiewicz logic.

Γ | Π | ∆,φ ψ, Γ | Π | ∆
→ L3F

φ→ ψ, Γ | Π | ∆

Γ | φ,ψ,Π | ∆ ψ,Γ | Π | ∆,φ
→ L3U

Γ | φ→ ψ,Π | ∆

φ,Γ | ψ,Π | ∆,ψ φ, Γ | φ,Π | ∆,ψ
→ L3T

Γ | Π | ∆,φ→ ψ

These are the rules for → in strong Kleene logic.

Γ | Π | ∆,φ ψ, Γ | Π | ∆
→KsF

φ→ ψ, Γ | Π | ∆

ψ,Γ | ψ,Π | ∆ Γ | φ,ψ,Π | ∆ Γ | φ,Π | ∆,φ
→KsU

Γ | φ→ ψ,Π | ∆

φ,Γ | Π | ∆,ψ
→KsT

Γ | Π | ∆,φ→ ψ

These are the rules for → in Gödel logic.

Γ | φ,Π | ∆,φ ψ, Γ | Π | ∆
→G3F

φ→ ψ, Γ | Π | ∆

Γ | ψ,Π | ∆ Γ | Π | ∆,φ
→G3U

Γ | φ→ ψ,Π | ∆

28 many-valued-logic rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

φ, Γ | ψ,Π | ∆,ψ φ, Γ | φ,Π | ∆,ψ
→G3

T
Γ | Π | ∆,φ→ ψ

Photo Credits

29

A
|
A

|
A

W
T

A
|
A

|
B
,A

W
U

A
|
B
,A

|
B
,A

W
U

A
|
A
,B
,A

|
B
,A

A
|
A

|
A

W
T

A
|
A

|
A
,A

W
T

A
|
A

|
B
,A
,A

W
F

B
,A

|
A

|
B
,A
,A

→
U

A
|
A
→
B
,A

|
B
,A

B
|
B

|
B

W
U

B
|
A
,B

|
B

X
U

B
|
B
,A

|
B

W
U

B
|
A
,B
,A

|
B

W
F

A
,B

|
A
,B
,A

|
B

X
F

B
,A

|
A
,B
,A

|
B

A
|
A

|
A

W
T

A
|
A

|
B
,A

W
F

B
,A

|
A

|
B
,A

W
F

B
,B
,A

|
A

|
B
,A

→
U

B
,A

|
A
→
B
,A

|
B

→
F

A
→
B
,A

|
A
→
B
,A

|
B

F
ig

u
re

4
.1

:
E

x
a
m

p
le

d
eriva

tio
n

in
 L
3

30 many-valued-logic rev: 6c541de (2024-02-28) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Bibliography

31

	Many-valued Logic
	Syntax and Semantics
	Introduction
	Languages and Connectives
	Formulas
	Matrices
	Valuations and Satisfaction
	Semantic Notions
	Many-valued logics as sublogics of C

	Three-valued Logics
	Introduction
	Łukasiewicz logic
	Kleene logics
	Gödel logics
	Designating not just T

	Infinite-valued Logics
	Introduction
	Łukasiewicz logic
	Gödel logics

	Sequent Calculus
	Introduction
	Rules and Derivations
	Structural Rules
	Propositional Rules for Selected Logics

	Photo Credits
	Bibliography

