inf.1 Gödel logics

This is a short “stub” of a section on infinite-valued Gödel logic.

Definition inf.1. Infinite-valued Gödel logic G_{∞} is defined using the matrix:

1. The standard propositional language L_0 with $\bot, \neg, \land, \lor, \rightarrow$.
2. The set of truth values V_{∞}.
3. 1 is the only designated value, i.e., $V^+ = \{1\}$.
4. Truth functions are given by the following functions:

 \[
 \begin{align*}
 \neg_G(x) &= \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{otherwise} \end{cases} \\
 \land_G(x, y) &= \min(x, y) \\
 \lor_G(x, y) &= \max(x, y) \\
 \rightarrow_G(x, y) &= \begin{cases} 1 & \text{if } x \leq y \\ y & \text{otherwise.} \end{cases}
 \end{align*}
 \]

m-valued Gödel logic is defined the same, except $V = V_m$.

Proposition inf.2. The logic G_3 defined by ?? is the same as G_3 defined by Definition inf.1.

Proof. This can be seen by comparing the truth tables for the connectives given in ?? with the truth tables determined by the equations in Definition inf.1:

\[
\begin{array}{c|c|c|c}
\neg_G & \land_G & \lor_G \\
\hline
1 & 0 & 1 \\
1/2 & 0 & 1/2 \\
0 & 1 & 0 \\
\end{array}
\begin{array}{c|c|c|c}
\rightarrow_G & \leftarrow_G \\
\hline
1 & 1/2 & 0 \\
1/2 & 1/2 & 1/2 \\
0 & 1 & 0 \\
\end{array}
\]

Proposition inf.3. If $\Gamma \vdash_{G_{\infty}} \psi$ then $\Gamma \vdash_{G_m} \psi$ for all $m \geq 2$.

Proof. Exercise.
Problem inf.1. Prove Proposition inf.3.

In fact, the converse holds as well.

Like G_3, G_∞ has all intuitionistically valid formulas as tautologies, and the same examples of non-tautologies are non-tautologies of G_∞:

\[
\begin{align*}
 p \lor \lnot p & \quad (p \to q) \to (\lnot p \lor q) \\
 \lnot \lnot p \to p & \quad \lnot (p \land q) \to (\lnot p \lor \lnot q) \\
 ((p \to q) \to p) \to p &
\end{align*}
\]

The example of an intuitionistically invalid formula that is nevertheless a tautology of G_3, $(p \to q) \lor (q \to p)$, is also a tautology in G_∞. In fact, G_∞ can be characterized as intuitionistic logic to which the schema $(\varphi \to \psi) \lor (\psi \to \varphi)$ is added. This was shown by Michael Dummett, and so G_∞ is often referred to as Gödel-Dummett logic LC.

Problem inf.2. Show that $(p \to q) \lor (q \to p)$ is a tautology of G_∞.

Photo Credits

Bibliography