syn.1 Unique Readability

We may wonder if for each term there is a unique way of forming it, and there
is. For each lambda term there is only one way to construct and interpret it.
In the following discussion, a \textit{formation} is the procedure of constructing a term
using the formation rules (one or several times) of \textit{??}.

\textbf{Lemma syn.1.} \textit{A term starts with either a variable or a parenthesis.}

\textit{Proof.} Something counts as a term only if it is constructed according to \textit{??}. If
it is the result of \textit{??}, it must be a variable. If it is the result of \textit{??} or \textit{??}, it
starts with a parenthesis. \qed

\textbf{Lemma syn.2.} \textit{The result of an application starts with either two parentheses
or a parenthesis and a variable.}

\textit{Proof.} If \(M \) is the result of an application, it is of the form \((PQ)\), so it begins
with a parenthesis. Since \(P \) is a term, by \textbf{Lemma syn.1}, it begins either with
a parenthesis or a variable. \qed

\textbf{Lemma syn.3.} \textit{No proper initial part of a term is itself a term.}

\textbf{Problem syn.1.} Prove \textbf{Lemma syn.3} by induction on the length of terms.

\textbf{Proposition syn.4 (Unique Readability).} \textit{There is a unique formation
for each term. In other words, if a term \(M \) is formed by a formation, then it
is the only formation that can form this term.}

\textit{Proof.} We prove this by induction on the formation of terms.

1. \(M \) is of the form \(x \), where \(x \) is some variable. Since the results of abstrac-
tions and applications always start with parentheses, they cannot have
been used to construct \(M \); Thus, the formation of \(M \) must be a single
step of \textit{??}.

2. \(M \) is of the form \((\lambda x. N)\), where \(x \) is some variable and \(N \) is a term. It
could not have been constructed according to \textit{??}, because it is not a
single variable. It is not the result of an application, by \textbf{Lemma syn.2}. Thus \(M \) can only be the result of an abstraction on \(N \). By inductive
hypothesis we know that formation of \(N \) is itself unique.

3. \(M \) is of the form \((PQ)\), where \(P \) and \(Q \) are terms. Since it starts with
a parentheses, it cannot also be constructed by \textit{??}. By \textbf{Lemma syn.1},
\(P \) cannot begin with \(\lambda \), so \((PQ)\) cannot be the result of an abstraction.
Now suppose there were another way of constructing \(M \) by application,
e.g., it is also of the form \((P'Q')\). Then \(P \) is a proper initial segment
of \(P' \) (or vice versa), and this is impossible by \textbf{Lemma syn.3}. So \(P \) and
\(Q \) are uniquely determined, and by inductive hypothesis we know that
formations of \(P \) and \(Q \) is unique. \qed
A more readable paraphrase of the above proposition is as follows:

Proposition syn.5. A term M can only be one of the following forms:

1. x, where x is a variable uniquely determined by M.

2. $(\lambda x. N)$, where x is a variable and N is another term, both of which is uniquely determined by M.

3. (PQ), where P and Q are two terms uniquely determined by M.

Photo Credits

Bibliography