Terms

The terms of the lambda calculus are built up inductively from an infinite supply of variables v_0, v_1, \ldots, the symbol “λ”, and parentheses. We will use x, y, z, \ldots to designate variables, and M, N, P, \ldots to designate terms.

Definition syn.1 (Terms). The set of terms of the lambda calculus is defined inductively by:

1. If x is a variable, then x is a term.
2. If x is a variable and M is a term, then $(\lambda x. M)$ is a term.
3. If both M and N are terms, then (MN) is a term.

If a term $(\lambda x. M)$ is formed according to (2) we say it is the result of an abstraction, and the x in λx is called a parameter. A term (MN) formed according to (3) is the result of an application.

The terms defined above are fully parenthesized. This can get rather cumbersome, as the term $(\lambda x. ((\lambda x. x)(\lambda x. (xx))))$ demonstrates. We will introduce conventions for avoiding parentheses. However, the official definition makes it easy to determine how a term is constructed according to Definition syn.1. For example, the last step of forming the term $(\lambda x. ((\lambda x. x)(\lambda x. (xx))))$ must be abstraction where the parameter is x. It results by abstraction from the term $((\lambda x. x)(\lambda x. (xx)))$, which is an application of two terms. Each of these two terms is the result of an abstraction, and so on.

Problem syn.1. Describe the formation of $(\lambda g. (\lambda x. (g(xx)))(\lambda x. (g(xx))))$.

Photo Credits

Bibliography