α-Equivalence is very natural, as terms that are α-equivalent “mean the same.” In fact, it is possible to give a syntax for lambda terms which does not distinguish terms that can be α-converted to each other. The best known replaces variables by their De Bruijn index.

When we write λx. M, we explicitly state that x is the parameter of the function, so that we can use x in M to refer to this parameter. In the de Bruijn index, however, parameters have no name and reference to them in the function body is denoted by a number denoting the levels of abstraction between them. For example, consider the example of λx. λy. yx: the outer abstraction is on binds the variable x; the inner abstraction binds the variable is y; the sub-term yx lies in the scope of the inner abstraction: there is no abstraction between y and its abstract λy, but one abstract between x and its abstract λx. Thus we write 0 1 for yx, and λ. λ. 01 for the entire term.

Definition syn.1. De Bruijn terms are inductively defined as follows:

1. n, where n is any natural number.
2. PQ, where P and Q are both De Bruijn terms.
3. λ. N, where N is a De Bruijn term.

A formalized translation from ordinary lambda terms to De Bruijn indexed terms is as follows:

Definition syn.2.

\[F_\Gamma(x) = \Gamma(x) \]
\[F_\Gamma(PQ) = F_\Gamma(P)F_\Gamma(Q) \]
\[F_\Gamma(\lambda x. N) = \lambda x. F_{\Gamma[x]}(N) \]

where \(\Gamma \) is a list of variables indexed from zero, and \(\Gamma(x) \) denotes the position of the variable x in \(\Gamma \). For example, if \(\Gamma \) is x, y, z, then \(\Gamma(x) \) is 0 and \(\Gamma(z) \) is 2.

\(x, \Gamma \) denotes the list resulted from pushing \(x \) to the head of \(\Gamma \); for instance, continuing the \(\Gamma \) in last example, \(w, \Gamma \) is \(w, x, y, z \).

Recovering a standard lambda term from a de Bruijn term is done as follows:

Definition syn.3.

\[G_\Gamma(n) = \Gamma[n] \]
\[G_\Gamma(PQ) = G_\Gamma(P)G_\Gamma(Q) \]
\[G_\Gamma(\lambda . N) = \lambda x. G_{\Gamma[x]}(N) \]

where \(\Gamma \) is again a list of variables indexed from zero, and \(\Gamma[n] \) denotes the variable in position n. For example, if \(\Gamma \) is x, y, z, then \(\Gamma[1] \) is y.

The variable x in last equation is chosen to be any variable that not in \(\Gamma \).
Here we give some results without proving them:

Proposition syn.4. If $M \xrightarrow{α} M'$, and $Γ$ is any list containing $\text{FV}(M)$, then $F_Γ(M) \equiv F_Γ(M')$.

Photo Credits

Bibliography