ldf.1 Primitive Recursive Functions are λ-Definable

Recall that the primitive recursive functions are those that can be defined from the basic functions zero, succ, and \(P^n_i \) by composition and primitive recursion.

Lemma ldf.1. The basic primitive recursive functions zero, succ, and projections \(P^n_i \) are λ-definable.

Proof. They are λ-defined by the following terms:

\[
\begin{align*}
\text{Zero} & \equiv \lambda a. \lambda f x. x \\
\text{Succ} & \equiv \lambda a. \lambda f x. f (a f x) \\
\text{Proj}^n_i & \equiv \lambda x_0 \ldots x_{n-1}. x_i
\end{align*}
\]

\[\square\]

Lemma ldf.2. Suppose the \(k \)-ary function \(f \), and \(n \)-ary functions \(g_0, \ldots, g_{k-1} \), are λ-definable by terms \(F \), \(G_0 \), \ldots, \(G_k \), and \(h \) is defined from them by composition. Then \(H \) is λ-definable.

Proof. \(h \) can be λ-defined by the term

\[
H \equiv \lambda x_0 \ldots x_{n-1}. F (G_0 x_0 \ldots x_{n-1}) \ldots (G_{k-1} x_0 \ldots x_{n-1})
\]

We leave verification of this fact as an exercise. \(\square\)

Problem ldf.1. Complete the proof of Lemma ldf.2 by showing that \(H(\overline{n_0}, \ldots, n_{n-1}) \mapsto h(n_0, \ldots, n_{n-1}) \).

Note that Lemma ldf.2 did not require that \(f \) and \(g_0, \ldots, g_{k-1} \) are primitive recursive; it is only required that they are total and λ-definable.

Lemma ldf.3. Suppose \(f \) is an \(n \)-ary function and \(g \) is an \(n+2 \)-ary function, they are λ-definable by terms \(F \) and \(G \), and the function \(h \) is defined from \(f \) and \(g \) by primitive recursion. Then \(h \) is also λ-definable.

Proof. Recall that \(h \) is defined by

\[
\begin{align*}
h(x_1, \ldots, x_n, 0) & = f(x_1, \ldots, x_n) \\
h(x_1, \ldots, x_n, y + 1) & = h(x_1, \ldots, x_n, y, h(x_1, \ldots, x_n, y)).
\end{align*}
\]

Informally speaking, the primitive recursive definition iterates the application of the function \(h \) \(y \) times and applies it to \(f(x_1, \ldots, x_n) \). This is reminiscent of the definition of Church numerals, which is also defined as a iterator.

For simplicity, we give the definition and proof for a single additional argument \(x \). The function \(h \) is λ-defined by:

\[
H \equiv \lambda x. \lambda y. \text{Snd}(yD(\overline{1}, F x))
\]
where

\[D \equiv \lambda p. \langle \text{Succ}(Fst\ p), (Gx(Fst\ p)(Snd\ p)) \rangle \]

The iteration state we maintain is a pair, the first of which is the current \(y \) and the second is the corresponding value of \(h \). For every step of iteration we create a pair of new values of \(y \) and \(h \); after the iteration is done we return the second part of the pair and that’s the final \(h \) value. We now prove this is indeed a representation of primitive recursion.

We want to prove that for any \(n \) and \(m \), \(H^0\ n\ m \rightarrow h(n, m) \). To do this we first show that if \(D_n \equiv D[\pi/x] \), then \(D_n^m(\bar{0}, F\ \pi) \rightarrow \langle m, h(n, m) \rangle \) We proceed by induction on \(m \).

If \(m = 0 \), we want \(D^0_n(\bar{0}, F\ \pi) \rightarrow \langle \bar{0}, h(n, 0) \rangle \). But \(D^0_n(\bar{0}, F\ \pi) \) just is \(\langle \bar{0}, F\ \pi \rangle \).

Since \(\lambda \)-defines \(f \), this reduces to \(\langle \bar{0}, f(n) \rangle \), and since \(f(n) = h(n, 0) \), this is \(\langle \bar{0}, h(n, 0) \rangle \)

Now suppose that \(D^m_n(\bar{0}, F\ \pi) \rightarrow \langle m, h(n, m) \rangle \). We want to show that \(D^{m+1}_n(\bar{0}, F\ \pi) \rightarrow \langle m + 1, h(n, m + 1) \rangle \).

\[
D^{m+1}_n(\bar{0}, F\ \pi) \equiv D_n(D^m_n(\bar{0}, F\ \pi))
\]

\[
\rightarrow D_n(\langle m, h(n, m) \rangle) \quad \text{(by IH)}
\]

\[
\equiv \langle \lambda p. \langle \text{Succ}(Fst\ p), (G\ \pi(Fst\ p)(Snd\ p)) \rangle \rangle \langle m, h(n, m) \rangle
\]

\[
\rightarrow \langle \text{Succ}(Fst\ \langle m, h(n, m) \rangle), (G\ \pi(Fst\ \langle m, h(n, m) \rangle)(Snd\ \langle m, h(n, m) \rangle)) \rangle
\]

\[
\rightarrow \langle \text{Succ} \ m, (G\ \pi \ m \ h(n, m)) \rangle
\]

\[
\rightarrow \langle m + 1, g(n, m, h(n, m)) \rangle
\]

Since \(g(n, m, h(n, m)) = h(n, m + 1) \), we are done.

Finally, consider

\[H\ \pi\ \bar{m} \equiv \lambda x. \lambda y. \text{Snd}(y(\lambda p. \langle \text{Succ}(Fst\ p), (G\ x(Fst\ p)(Snd\ p)) \rangle)(\bar{0}, F\ x)) \]

\[\pi\ \bar{m} \]

\[\rightarrow \text{Snd}(\langle \pi\ \langle \lambda p. \langle \text{Succ}(Fst\ p), (G\ \pi(Fst\ p)(Snd\ p)) \rangle \rangle \rangle(\bar{0}, F\ \pi)) \]

\[\equiv \text{Snd}(\langle \bar{m} \ D_n(\bar{0}, F\ \pi) \rangle) \]

\[\rightarrow \text{Snd}(\langle \bar{m}, h(n, m) \rangle) \]

\[\rightarrow h(n, m). \]

\[\Box \]

Proposition ldf.4. Every primitive recursive function is \(\lambda \)-definable.

Proof. By Lemma ldf.1, all basic functions are \(\lambda \)-definable, and by Lemma ldf.2 and Lemma ldf.3, the \(\lambda \)-definable functions are closed under composition and primitive recursion. \[\Box \]
Photo Credits

Bibliography