ldf.1 Minimization

The general recursive functions are those that can be obtained from the basic functions zero, succ, P^n by composition, primitive recursion, and regular minimization. To show that all general recursive functions are λ-definable we have to show that any function defined by regular minimization from a λ-definable function is itself λ-definable.

Lemma ldf.1. If $f(x_1, \ldots, x_k, y)$ is regular and λ-definable, then g defined by

$$g(x_1, \ldots, x_k) = \mu y f(x_1, \ldots, x_k, y) = 0$$

is also λ-definable.

Proof. Suppose the lambda term F λ-defines the regular function $f(\overline{x}, y)$. To λ-define h we use a search function and a fixpoint combinator:

$$\text{Search} \equiv \lambda g. \lambda f \overline{x} y. \text{IsZero}(f \overline{x} y) y (g \overline{x} (\text{Succ } y))$$

$$H \equiv \lambda\overline{x}. (\text{Y Search}) F \overline{x} \overline{0},$$

where Y is any fixpoint combinator. Informally speaking, Search is a self-referencing function: starting with y, test whether $f \overline{x} y$ is zero: if so, return y, otherwise call itself with Succ y. Thus $(\text{Y Search}) F \overline{n_1} \ldots \overline{n_k} \overline{0}$ returns the least m for which $f(n_1, \ldots, n_k, m) = 0$.

Specifically, observe that

$$(\text{Y Search}) F \overline{n_1} \ldots \overline{n_k} m \leftrightarrow m$$

if $f(n_1, \ldots, n_k, m) = 0$, or

$$\leftrightarrow (\text{Y Search}) F \overline{n_1} \ldots \overline{n_k} m + 1$$

otherwise. Since f is regular, $f(n_1, \ldots, n_k, y) = 0$ for some y, and so

$$(\text{Y Search}) F \overline{n_1} \ldots \overline{n_k} \overline{0} \leftrightarrow h(n_1, \ldots, n_k).$$

Proposition ldf.2. Every general recursive function is λ-definable.

Proof. By ??, all basic functions are λ-definable, and by ??, ??, and Lemma ldf.1, the λ-definable functions are closed under composition, primitive recursion, and regular minimization.

Photo Credits

Bibliography