ldf.1 Minimization

The general recursive functions are those that can be obtained from the basic functions zero, succ, \(P^n \) by composition, primitive recursion, and regular minimization. To show that all general recursive functions are \(\lambda \)-definable we have to show that any function defined by regular minimization from a \(\lambda \)-definable function is itself \(\lambda \)-definable.

Lemma ldf.1. If \(f(x_1, \ldots, x_k, y) \) is regular and \(\lambda \)-definable, then \(g \) defined by

\[
g(x_1, \ldots, x_k) = \mu y \ f(x_1, \ldots, x_k, y) = 0
\]

is also \(\lambda \)-definable.

Proof. Suppose the lambda term \(F \) \(\lambda \)-defines the regular function \(f(\vec{x}, y) \). To \(\lambda \)-define \(h \) we use a search function and a fixpoint combinator:

\[
\text{Search} \equiv \lambda g. \lambda f \vec{x} y. \text{IsZero}(f \vec{x} y) y (g \vec{x} (\text{Succ} \ y))
\]

\[
H \equiv \lambda \vec{x}. (Y \text{Search}) F \vec{x} 0,
\]

where \(Y \) is any fixpoint combinator. Informally speaking, Search is a self-referencing function: starting with \(y \), test whether \(f \vec{x} y \) is zero: if so, return \(y \), otherwise call itself with Succ \(y \). Thus \((Y \text{Search}) F \vec{n_1} \ldots \vec{n_k} \vec{0} \) returns the least \(m \) for which \(f(n_1, \ldots, n_k, m) = 0 \).

Specifically, observe that

\[
(Y \text{Search}) F \vec{n_1} \ldots \vec{n_k} \vec{m} \rightsquigarrow \vec{m}
\]

if \(f(n_1, \ldots, n_k, m) = 0 \), or

\[
\rightsquigarrow (Y \text{Search}) F \vec{n_1} \ldots \vec{n_k} \vec{m + 1}
\]

otherwise. Since \(f \) is regular, \(f(n_1, \ldots, n_k, y) = 0 \) for some \(y \), and so

\[
(Y \text{Search}) F \vec{n_1} \ldots \vec{n_k} \vec{0} \rightsquigarrow \vec{h}(n_1, \ldots, n_k). \tag*{\blacksquare}
\]

Proposition ldf.2. Every general recursive function is \(\lambda \)-definable.

Proof. By ??, all basic functions are \(\lambda \)-definable, and by ??, ??, and Lemma ldf.1, the \(\lambda \)-definable functions are closed under composition, primitive recursion, and regular minimization. \(\square \)

Photo Credits

Bibliography