Suppose we wanted to define the factorial function by recursion as a term Fac with the following property:

$$\text{Fac} \equiv \lambda n. \text{IsZero } n \top (\text{Mult } n (\text{Fac} (\text{Pred } n)))$$

That is, the factorial of n is 1 if $n = 0$, and n times the factorial of $n - 1$ otherwise. Of course, we cannot define the term Fac this way since Fac itself occurs in the right-hand side. Such recursive definitions involving self-reference are not part of the lambda calculus. Defining a term, e.g., by

$$\text{Mult} \equiv \lambda ab. a (\text{Add} a) 0$$

only involves previously defined terms in the right-hand side, such as Add. We can always remove Add by replacing it with its defining term. This would give the term Mult as a pure lambda term; if Add itself involved defined terms (as, e.g., Add$'$ does), we could continue this process and finally arrive at a pure lambda term.

However this is not true in the case of recursive definitions like the one of Fac above. If we replace the occurrence of Fac on the right-hand side with the definition of Fac itself, we get:

$$\text{Fac} \equiv \lambda n. \text{IsZero } n \top (\text{Mult } n ((\lambda n. \text{IsZero } n \top (\text{Mult } n (\text{Fac} (\text{Pred } n)))) (\text{Pred } n)))$$

and we still haven’t gotten rid of Fac on the right-hand side. Clearly, if we repeat this process, the definition keeps growing longer and the process never results in a pure lambda term. Thus this way of defining factorial (or more generally recursive functions) is not feasible.

The recursive definition does tell us something, though: If f were a term representing the factorial function, then the term

$$\text{Fac}' \equiv \lambda g. \lambda n. \text{IsZero } n \top (\text{Mult } n (g (\text{Pred } n)))$$

applied to the term f, i.e., $\text{Fac}' f$, also represents the factorial function. That is, if we regard Fac' as a function accepting a function and returning a function, the value of $\text{Fac}' f$ is just f, provided f is the factorial. A function f with the property that $\text{Fac}' f \overset{\beta}{=} f$ is called a fixpoint of Fac'. So, the factorial is a fixpoint of Fac'.

There are terms in the lambda calculus that compute the fixpoints of a given term, and these terms can then be used to turn a term like Fac' into the definition of the factorial.

Definition ldf.1. The Y-combinator is the term:

$$Y \equiv (\lambda ux. x(uux)) (\lambda ux. x(uux))$$
Theorem ldf.2. Y has the property that $Yg \rightarrow g(Yg)$ for any term g. Thus, Yg is always a fixpoint of g.

Proof. Let’s abbreviate $(\lambda ux. x(uux))$ by U, so that $Y \equiv UU$. Then

\[Yg \equiv (\lambda ux. x(uux))Ug \]
\[\rightarrow (\lambda x. x(UUx))g \]
\[\rightarrow g(UUg) \equiv g(Yg). \]

Since $g(Yg)$ and Yg both reduce to $g(Yg)$, $g(Yg) \beta \equiv Yg$, so Yg is a fixpoint of g. \qed

Of course, since Yg is a redex, the reduction can continue indefinitely:

\[Yg \rightarrow g(Yg) \]
\[\rightarrow g(g(Yg)) \]
\[\rightarrow g(g(g(Yg))) \]
\[\ldots \]

So we can think of Yg as g applied to itself infinitely many times. If we apply g to it one additional time, we—so to speak—aren’t doing anything extra: g applied to g applied infinitely many times to Yg is still g applied to Yg infinitely many times.

Note that the above sequence of \(\beta\)-reduction steps starting with Yg is infinite. So if we apply Yg to some term, i.e., consider $(Yg)N$, that term will also reduce to infinitely many different terms, namely $(g(Yg))N$, $(g(g(Yg)))N$, \ldots. It is nevertheless possible that some other sequence of reduction steps does terminate in a normal form.

Take the factorial for instance. Define Fac as $Y \text{Fac'}$ (i.e., a fixpoint of Fac'). Then:

\[
\text{Fac} \ 3 \quad \rightarrow \quad Y \text{Fac'} \ 3 \\
\rightarrow \quad \text{Fac'}(Y \text{Fac'}) \ 3 \\
\equiv \quad (\lambda x. \lambda n. \text{IsZero} \ n \ 1 \ (\text{Mult} \ n \ (x(\text{Pred} \ n)))) \ \text{Fac} \ 3 \\
\rightarrow \quad \text{IsZero} \ 3 \ 1 \ (\text{Mult} \ 3 \ (\text{Fac}(\text{Pred} \ 3))) \\
\rightarrow \quad \text{Mult} \ 3 \ (\text{Fac} \ 2).
\]

Similarly,

\[
\text{Fac} \ 2 \rightarrow \ \text{Mult} \ 2 \ (\text{Fac} \ 1) \\
\text{Fac} \ 1 \rightarrow \ \text{Mult} \ 1 \ (\text{Fac} \ 0)
\]
but

\[\text{Fac} \overline{0} \rightarrow \text{Fac}'(Y \text{Fac}') \overline{0} \]
\[\equiv (\lambda x. \lambda n. \text{IsZero } n \overline{1} (\text{Mult } n (x(\text{Pred } n)))) \text{Fac} \overline{0} \]
\[\rightarrow \text{IsZero} \overline{0} \overline{1} (\text{Mult } \overline{0} (\text{Fac}(\text{Pred } \overline{0}))). \]
\[\rightarrow \overline{1}. \]

So together

\[\text{Fac} \overline{3} \rightarrow \text{Mult } \overline{3} (\text{Mult } \overline{2} (\text{Mult } \overline{1} \overline{1})). \]

What goes for Fac' goes for any recursive definition. Suppose we have a recursive equation

\[g x_1 \ldots x_n \overset{\beta}{\Rightarrow} N \]

where \(N \) may contain \(g \) and \(x_1, \ldots, x_n \). Then there is always a term \(G \equiv (Y \lambda g. \lambda x_1 \ldots x_n. N) \) such that

\[G x_1 \ldots x_n \overset{\beta}{\Rightarrow} N[G/g]. \]

For by the fixpoint theorem,

\[G \equiv (Y \lambda g. \lambda x_1 \ldots x_n. N) \rightarrow \lambda g. \lambda x_1 \ldots x_n. N(Y \lambda g. \lambda x_1 \ldots x_n. N) \]
\[\equiv (\lambda g. \lambda x_1 \ldots x_n. N) G \]

and consequently

\[G x_1 \ldots x_n \rightarrow (\lambda g. \lambda x_1 \ldots x_n. N) G x_1 \ldots x_n \]
\[\rightarrow (\lambda x_1 \ldots x_n. N[G/g]) x_1 \ldots x_n \]
\[\rightarrow N[G/g]. \]

The \(Y \) combinator of Definition ldf.1 is due to Alan Turing. Alonzo Church had proposed a different version which we’ll call \(Y_C \):

\[Y_C \equiv \lambda g. (\lambda x. g(xx))((\lambda x. g(xx))). \]

Church’s combinator is a bit weaker than Turing’s in that \(Y g \overset{\beta}{\Rightarrow} g(Y g) \) but not \(Y g \overset{\beta}{\Rightarrow} g(Y g) \). Let \(V \) be the term \(\lambda x. g(xx) \), so that \(Y_C \equiv \lambda g. V V \). Then

\[V V \equiv (\lambda x. g(xx))V \rightarrow g(V V) \]

and thus

\[Y_C g \equiv (\lambda g. V V) g \rightarrow V V \rightarrow g(V V), \]

but also

\[g(Y_C g) \equiv g((\lambda g. V V) g) \rightarrow g(V V). \]
In other words, Y_Cg and $g(Y_Cg)$ reduce to a common term $g(VV)$; so $Y_Cg \overset{\beta}{=} g(Y_Cg)$. This is often enough for applications.

Photo Credits

Bibliography