When it comes to primitive recursion, we finally need to do some work. We will have to proceed in stages. As before, on the assumption that we already have terms G and H that λ-define functions g and h, respectively, we want a term H that λ-defines the function f defined by

\[
\begin{align*}
f(0, \vec{z}) &= g(\vec{z}) \\
f(x+1, \vec{z}) &= h(z, f(x, \vec{z}), \vec{z}).
\end{align*}
\]

So, in general, given lambda terms G' and H', it suffices to find a term F such that

\[
\begin{align*}
F(0, \vec{z}) &\equiv G(\vec{z}) \\
F(n+1, \vec{z}) &\equiv H(n, F(n, \vec{z})),
\end{align*}
\]

for every natural number n; the fact that G' and H' λ-define g and h means that whenever we plug in numerals \vec{m} for \vec{z}, $F(n+1, \vec{m})$ will normalize to the right answer.

But for this, it suffices to find a term F satisfying

\[
\begin{align*}
F(0) &\equiv G \\
F(n+1) &\equiv H(n, F(n))
\end{align*}
\]

for every natural number n, where

\[
\begin{align*}
G &= \lambda \vec{z}. G'(\vec{z}) \\
H(u, v) &= \lambda \vec{z}. H'(u, v(u, \vec{z}), \vec{z}).
\end{align*}
\]

In other words, with lambda trickery, we can avoid having to worry about the extra parameters \vec{z}—they just get absorbed in the lambda notation.

Before we define the term F, we need a mechanism for handling ordered pairs. This is provided by the next lemma.

Lemma int.1. There is a lambda term D such that for each pair of lambda terms M and N, $D(M, N)(\overline{0}) \rightarrow M$ and $D(M, N)(\overline{1}) \rightarrow N$.

Proof. First, define the lambda term K by

\[
K(y) = \lambda x. y.
\]

In other words, K is the term $\lambda y. \lambda x. y$. Looking at it differently, for every M, $K(M)$ is a constant function that returns M on any input.

Now define $D(x, y, z)$ by $D(x, y, z) = z(K(y))x$. Then we have

\[
\begin{align*}
D(M, N, \overline{0}) &\rightarrow \overline{0}(K(N))M \rightarrow M \\
D(M, N, \overline{1}) &\rightarrow \overline{1}(K(N))M \rightarrow K(N)M \rightarrow N,
\end{align*}
\]

as required. \qed
The idea is that \(D(M, N) \) represents the pair \(\langle M, N \rangle \), and if \(P \) is assumed to represent such a pair, \(P(\bar{0}) \) and \(P(\bar{1}) \) represent the left and right projections, \((P)_0 \) and \((P)_1 \). We will use the latter notations.

Lemma int.2. The \(\lambda \)-definable functions are closed under primitive recursion.

Proof. We need to show that given any terms, \(G \) and \(H \), we can find a term \(F \) such that

\[
F(\bar{0}) \equiv G \\
F(\bar{n} + 1) \equiv H(\bar{n}, F(\bar{n}))
\]

for every natural number \(n \). The idea is roughly to compute sequences of pairs \(\langle \bar{0}, F(\bar{0}) \rangle, \langle \bar{1}, F(\bar{1}) \rangle, \ldots \), using numerals as iterators. Notice that the first pair is just \(\langle \bar{0}, G \rangle \). Given a pair \(\langle \bar{n}, F(\bar{n}) \rangle \), the next pair, \(\langle \bar{n} + 1, F(\bar{n} + 1) \rangle \) is supposed to be equivalent to \(\langle \bar{n} + 1, H(\bar{n}, F(\bar{n})) \rangle \). We will design a lambda term \(T \) that makes this one-step transition.

The details are as follows. Define \(T(u) \) by

\[
T(u) = \langle S((u)_0), H((u)_0, (u)_1) \rangle.
\]

Now it is easy to verify that for any number \(n \),

\[
T(\langle \bar{n}, M \rangle) \rightarrow \langle \bar{n} + 1, H(\bar{n}, M) \rangle.
\]

As suggested above, given \(G \) and \(H \), define \(F(u) \) by

\[
F(u) = (u(T, \langle \bar{0}, G \rangle))_1.
\]

In other words, on input \(\bar{n} \), \(F \) iterates \(T \) \(n \) times on \(\langle \bar{0}, G \rangle \), and then returns the second component. To start with, we have

1. \(F(\bar{0}) \equiv G \)

By induction on \(n \), we can show that for each natural number one has the following:

1. \(F(\bar{n} + 1) \equiv H(\bar{n}, F(\bar{n})) \)

For the second clause, we have

\[
F(\bar{n} + 1) \rightarrow (\bar{n} + 1(T, \langle \bar{0}, G \rangle))_1 \\
\equiv (T(\bar{n} + 1(T, \langle \bar{0}, G \rangle)))_1 \\
\equiv (T(\langle \bar{n}, F(\bar{n}) \rangle))_1 \\
\equiv ((\bar{n} + 1, H(\bar{n}, F(\bar{n}))))_1 \\
\equiv H(\bar{n}, F(\bar{n})).
\]
Here we have used the induction hypothesis on the second-to-last line. For the first clause, we have

\[\overline{n+1}(T, (\overline{0}, G)) \equiv T(\pi(T, (\overline{0}, G))) \]
\[\equiv T(\pi, F(\pi)) \]
\[\equiv (\overline{n+1}, H(\pi, F(\pi))) \]
\[\equiv (\overline{n+1}, F(\overline{n+1})). \]

Here we have used the second clause in the last line. So we have shown \(F(\overline{0}) \equiv G \) and, for every \(n \), \(F(\overline{n+1}) \equiv H(\overline{n}, F(\overline{n})) \), which is exactly what we needed. \(\square \)

Photo Credits

Bibliography