int.1 \(\lambda \)-Definable Functions are Computable

\textbf{Theorem int.1.} If a partial function \(f \) is \(\lambda \)-\textit{defined} by a lambda term, it is computable.

\textit{Proof.} Suppose a function \(f \) is \(\lambda \)-\textit{defined} by a lambda term \(X \). Let us describe an informal procedure to compute \(f \). On input \(m_0, \ldots, m_{n-1} \), write down the term \(Xm_0 \ldots m_{n-1} \). Build a tree, first writing down all the one-step reductions of the original term; below that, write all the one-step reductions of those (i.e., the two-step reductions of the original term); and keep going. If you ever reach a numeral, return that as the answer; otherwise, the function is undefined.

An appeal to Church’s thesis tells us that this function is computable. A better way to prove the theorem would be to give a recursive description of this search procedure. For example, one could define a sequence primitive recursive functions and relations, “IsASubterm,” “Substitute,” “ReducesToInOneStep,” “ReductionSequence,” “Numeral,” etc. The partial recursive procedure for computing \(f(m_0, \ldots, m_{n-1}) \) is then to search for a sequence of one-step reductions starting with \(Xm_0 \ldots m_{n-1} \) and ending with a numeral, and return the number corresponding to that numeral. The details are long and tedious but otherwise routine.

\(\square \)

Photo Credits

Bibliography