Currying

A \(\lambda \)-abstract \(\lambda x. M \) represents a function of one argument, which is quite a limitation when we want to define function accepting multiple arguments. One way to do this would be by extending the \(\lambda \)-calculus to allow the formation of pairs, triples, etc., in which case, say, a three-place function \(\lambda x. M \) would expect its argument to be a triple. However, it is more convenient to do this by Currying.

Let’s consider an example. If we want to define a function that accepts two arguments and returns the first, we write \(\lambda x. \lambda y. x \), which literally is a function that accepts an argument and returns a function that accepts another argument and returns the first argument while it drops the second. Let’s see what happens when we apply it to two arguments:

\[
(\lambda x. \lambda y. x) MN \xrightarrow{\beta} (\lambda y. M) N \xrightarrow{\beta} M
\]

In general, to write a function with parameters \(x_1, \ldots, x_n \) defined by some term \(N \), we can write \(\lambda x_1. \lambda x_2. \ldots \lambda x_n. N \). If we apply \(n \) arguments to it we get:

\[
(\lambda x_1. \lambda x_2. \ldots \lambda x_n. N) M_1 \ldots M_n \xrightarrow{\beta} \\
\xrightarrow{\beta} ((\lambda x_2. \ldots \lambda x_n. N)[M_1/x_1]) M_2 \ldots M_n \\
\equiv (\lambda x_2. \ldots \lambda x_n. N[M_1/x_1]) M_2 \ldots M_n \\
\vdots \\
\xrightarrow{\beta} P[M_1/x_1] \ldots [M_n/x_n]
\]

The last line literally means substituting \(M_i \) for \(x_i \) in the body of the function definition, which is exactly what we want when applying multiple arguments to a function.

Photo Credits

Bibliography