Lemma int.1. The \(\lambda \)-definable functions are closed under composition.

\begin{proof}
Suppose \(f \) is defined by composition from \(h, g_0, \ldots, g_{k-1} \). Assuming \(h, g_0, \ldots, g_{k-1} \) are \(\lambda \)-defined by \(H, G_0, \ldots, G_{k-1} \), respectively, we need to find a term \(F \) that \(\lambda \)-defines \(f \). But we can simply define \(F \) by

\[
F(x_0, \ldots, x_{l-1}) = H(G_0(x_0, \ldots, x_{l-1}), \ldots, G_{k-1}(x_0, \ldots, x_{l-1})).
\]

In other words, the language of the lambda calculus is well suited to represent composition.
\end{proof}

Photo Credits

Bibliography