The Church-Rosser Property

Theorem int.1. Let M, N_1, and N_2 be terms, such that $M \rightarrow N_1$ and $M \rightarrow N_2$. Then there is a term P such that $N_1 \rightarrow P$ and $N_2 \rightarrow P$.

Corollary int.2. Suppose M can be reduced to normal form. Then this normal form is unique.

Proof. If $M \rightarrow N_1$ and $M \rightarrow N_2$, by the previous theorem there is a term P such that N_1 and N_2 both reduce to P. If N_1 and N_2 are both in normal form, this can only happen if $N_1 \equiv P \equiv N_2$.

Finally, we will say that two terms M and N are \(\beta \)-equivalent, or just equivalent, if they reduce to a common term; in other words, if there is some P such that $M \rightarrow P$ and $N \rightarrow P$. This is written $M \overset{\beta}{=} N$. Using Theorem int.1, you can check that \(\overset{\beta}{=} \) is an equivalence relation, with the additional property that for every M and N, if $M \rightarrow N$ or $N \rightarrow M$, then $M \overset{\beta}{=} N$. (In fact, one can show that \(\overset{\beta}{=} \) is the smallest equivalence relation having this property.)

Photo Credits

Bibliography