Lemma int.1. *The functions zero, succ, and \(P^n_i \) are \(\lambda \)-definable.*

Proof. Zero is just \(\lambda x. \lambda y. y \).

The successor function succ, is defined by \(\text{Succ}(u) = \lambda x. \lambda y. x(uxy) \). You should think about why this works; for each numeral \(n \), thought of as an iterator, and each function \(f \), \(\text{Succ}(n, f) \) is a function that, on input \(y \), applies \(f \) \(n \) times starting with \(y \), and then applies it once more.

There is nothing to say about projections: \(\text{Proj}^n_i(x_0, \ldots, x_{n-1}) = x_i \). In other words, by our conventions, \(\text{Proj}^n_i \) is the lambda term \(\lambda x_0. \ldots \lambda x_{n-1}. x_i \). \(\square \)