Parallel β-reduction

We introduce the notion of parallel β-reduction, and prove the it has the Church–Rosser property.

Definition cr.1 (parallel β-reduction, \rightarrow^\parallel). Parallel reduction (\rightarrow^\parallel) of terms is inductively defined as follows:

1. $x \rightarrow^\parallel x$.
2. If $N \rightarrow^\beta N'$ then $\lambda x. N \rightarrow^\parallel \lambda x. N'$.
3. If $P \rightarrow^\beta P'$ and $Q \rightarrow^\beta Q'$ then $PQ \rightarrow^\parallel P'Q'$.
4. If $N \rightarrow^\beta N'$ and $Q \rightarrow^\beta Q'$ then $(\lambda x. N)Q \rightarrow^\parallel N'[Q'/x]$.

Parallel β-reduction allows us to reduce any number of redices in a term in one step. It is different from β-reduction in the sense that we can only contract redices that occur in the original term, but not redices arising from parallel β-reduction. For example, the term $(\lambda f. fx)(\lambda y. y)$ can only be parallel β-reduced to itself or to $(\lambda y. y)x$, but not further to x, although it β-reduces to x, because this redex arises only after one step of parallel β-reduction. A second parallel β-reduction step yields x, though.

Theorem cr.2. $M \rightarrow^\parallel M$.

Proof. Exercise.

Problem cr.1. Prove Theorem cr.2.

Definition cr.3 (β-complete development). The β-complete development $M^{*\beta}$ of M is defined inductively as follows:

$$x^{*\beta} = x$$

$$\lambda x. N^{*\beta} = \lambda x. N^{*\beta}$$

$$PQ^{*\beta} = P^{*\beta}Q^{*\beta}$$

if P is not a λ-abstract

$$((\lambda x. N)Q)^{*\beta} = N^{*\beta}[Q^{*\beta}/x]$$

The β-complete development of a term, as its name suggests, is a “complete parallel reduction.” While for parallel β-reduction we still can choose to not contract a redex, for complete development we have no choice but to contract all of them. Thus the complete development of $(\lambda f. fx)(\lambda y. y)$ is $(\lambda y. y)x$, not itself.
This definition has the problem that we haven’t introduced how to define functions on (λ-)terms recursively. Will fix in future.

Lemma cr.4. If $M \xrightarrow{\beta} M'$ and $R \xrightarrow{\beta} R'$, then $M[R/y] \xrightarrow{\beta} M'[R'/y]$.

Proof. By induction on the derivation of $M \xrightarrow{\beta} M'$.

1. The last step is (1): Exercise.

2. The last step is (2): Then M is $\lambda x. N$ and M' is $\lambda x. N'$, where $N \xrightarrow{\beta} N'$. We want to prove that $(\lambda x. N)[R/y] \xrightarrow{\beta} (\lambda x. N')[R'/y]$, i.e., $\lambda x. N[R/y] \xrightarrow{\beta} \lambda x. N'[R'/y]$. This follows immediately by (2) and the induction hypothesis.

3. The last step is (3): Exercise.

4. The last step is (4): M is $(\lambda x. N)Q$ and M' is $N'[Q'/x]$. We want to prove that $((\lambda x. N)Q)[R/y] \xrightarrow{\beta} N'[Q'/x][R'/y]$, i.e., $(\lambda x. N[R/y])Q[R/y] \xrightarrow{\beta} N'[R'/y][Q'[R'/y]/x]$. This follows by (4) and the induction hypothesis.

Problem cr.2. Complete the proof of Lemma cr.4.

Lemma cr.5. If $M \xrightarrow{\beta} M'$ then $M' \xrightarrow{\beta} M^{*\beta}$.

Proof. By induction on the derivation of $M \xrightarrow{\beta} M'$.

1. The last rule is (1): Exercise.

2. The last rule is (2): M is $\lambda x. N$ and M' is $\lambda x. N'$ with $N \xrightarrow{\beta} N'$. We want to show that $\lambda x. N' \xrightarrow{\beta} (\lambda x. N)^{*\beta}$, i.e., $\lambda x. N' \xrightarrow{\beta} \lambda x. N^{*\beta}$ by eq. (2). It follows by (2) and the induction hypothesis.

3. The last rule is (3): M is PQ and M' is $P'Q'$ for some P, Q, P' and Q', with $P \xrightarrow{\beta} P'$ and $Q \xrightarrow{\beta} Q'$. By induction hypothesis, we have $P' \xrightarrow{\beta} P^{*\beta}$ and $Q' \xrightarrow{\beta} Q^{*\beta}$.

 a) If P is $\lambda x. N$ for some x and N, then P' must be $\lambda x. N'$ for some N' with $N \xrightarrow{\beta} N'$. By induction hypothesis we have $N' \xrightarrow{\beta} N^{*\beta}$ and $Q' \xrightarrow{\beta} Q^{*\beta}$. Then $(\lambda x. N')Q' \xrightarrow{\beta} N^{*\beta}[Q^{*\beta}/x]$ by (4).

 b) If P is not a λ-abstract, then $P'Q' \xrightarrow{\beta} P^{*\beta}Q^{*\beta}$ by (3), and the right-hand side is $PQ^{*\beta}$ by eq. (3).
4. The last rule is (4): M is $(\lambda x. N)Q$ and M' is $N'[Q'/x]$ for some x, N, Q, N', and Q', with $N \xrightarrow{\beta} N'$ and $Q \xrightarrow{\beta} Q'$. By induction hypothesis we know $N' \xrightarrow{\beta} N^* \beta$ and $Q' \xrightarrow{\beta} Q^* \beta$. By Lemma cr.4 we have $N'[Q'/x] \xrightarrow{\beta} N^* \beta [Q^* \beta / x]$, the right-hand side of which is exactly $((\lambda x. N)Q)^* \beta$. □

Problem cr.3. Complete the proof of Lemma cr.5.

Theorem cr.6. $\xrightarrow{\beta}$ has the Church–Rosser property.

\textit{Proof.} Immediate from Lemma cr.5. □

Photo Credits

Bibliography