In this chapter we introduce the concept of Church–Rosser property and some common properties of this property.

Definition 1 (Church–Rosser property, CR). A relation \rightarrow on terms is said to satisfy the *Church–Rosser property* iff, whenever $M \rightarrow P$ and $M \rightarrow Q$, then there exists some N such that $P \rightarrow N$ and $Q \rightarrow N$.

We can view the lambda calculus as a model of computation in which terms in normal form are “values” and a reducibility relation on terms are the “calculation rules.” The Church–Rosser property states that when there is more than one way to proceed with a calculation, there is still only a single value of the expression.

To take an example from elementary algebra, there's more than one way to calculate $4 \times (1 + 2) + 3$. It can either be reduced to $4 \times 3 + 3$ (if we first reduce $1 + 2$ to 3) or to $4 \times 1 + 4 \times 2 + 3$ (if we first reduce $4 \times (1 + 2)$ using distributivity). Both of these, however, can be further reduced to $12 + 3$.

If we take \rightarrow to be β-reduction, we easily see that a consequence of the Church–Rosser property is that if a term has a normal form, then it is unique. For suppose M can be reduced to P and Q, both of which are normal forms. By the Church–Rosser property, there exists some N such that both P and Q reduce to it. Since by assumption P and Q are normal forms, the reduction of P and Q to N can only be the trivial reduction, i.e., P, Q, and N are identical. This justifies our speaking of the normal form of a term.

In viewing the lambda calculus as a model of computation, then, the normal form of a term can be thought of as the “final result” of the computation starting with that term. The above corollary means there’s only one, if any, final result of a computation, just like there is only one result of computing $4 \times (1 + 2) + 3$, namely 15.

Theorem 2. If a relation \rightarrow satisfies the Church–Rosser property, and \rightarrow^* is the smallest transitive relation containing \rightarrow, then \rightarrow^* satisfies the Church–Rosser property too.

Proof. Suppose

$M \rightarrow P_1 \rightarrow \ldots \rightarrow P_m$ and $M \rightarrow Q_1 \rightarrow \ldots \rightarrow Q_n$.

We will prove the theorem by constructing a grid N of terms of height is $m + 1$ and width $n + 1$. We use $N_{i,j}$ to denote the term in the i-th row and j-th column.
We construct \(N \) in such a way that \(N_{i,j} \xrightarrow{X} N_{i+1,j} \) and \(N_{i,j} \xrightarrow{X} N_{i,j+1} \). It is defined as follows:

\[
\begin{align*}
N_{0,0} &= M \\
N_{i,0} &= P_i & \text{if } 1 \leq i \leq m \\
N_{0,j} &= Q_j & \text{if } 1 \leq j \leq n
\end{align*}
\]

and otherwise:

\[
N_{i,j} = R
\]

where \(R \) is a term such that \(N_{i-1,j} \xrightarrow{X} R \) and \(N_{i,j-1} \xrightarrow{X} R \). By the Church–Rosser property of \(\xrightarrow{X} \), such a term always exists.

Now we have \(N_{m,0} \xrightarrow{X} \cdots \xrightarrow{X} N_{m,n} \) and \(N_{0,n} \xrightarrow{X} \cdots \xrightarrow{X} N_{m,n} \). Note \(N_{m,0} \) is \(P \) and \(N_{0,n} \) is \(Q \). By definition of \(\xrightarrow{X} \) the theorem follows. \(\square \)

Photo Credits

Bibliography