In this chapter we introduce the concept of Church-Rosser property and some common properties of this property.

Definition cr.1 (Church-Rosser property, CR). A relation \(\rightarrow \) on terms is said to satisfy the Church-Rosser property iff, whenever \(M \rightarrow P \) and \(M \rightarrow Q \), then there exists some \(N \) such that \(P \rightarrow N \) and \(Q \rightarrow N \).

We can view the lambda calculus as a model of computation in which terms in normal form are “values” and a reducibility relation on terms are the “calculation rules.” The Church-Rosser property states is that when there is more than one way to proceed with a calculation, there is still only a single value of the expression.

To take an example from elementary algebra, there’s more than one way to calculate \(4 \times (1 + 2) + 3 \). It can either be reduced to \(4 \times 3 + 3 \) (if we first reduce \(1 + 2 \) to \(3 \)) or to \(4 \times 1 + 4 \times 2 + 3 \) (if we first reduce \(4 \times (1 + 2) \) using distributivity). Both of these, however, can be further reduced to \(12 + 3 \).

If we take \(\rightarrow \) to be \(\beta \)-reduction, we easily see that a consequence of the Church-Rosser property is that if a term has a normal form, then it is unique. For suppose \(M \) can be reduced to \(P \) and \(Q \), both of which are normal forms. By Church-Rosser property, there exists some \(N \) such that both \(P \) and \(Q \) reduce to it. Since by assumption \(P \) and \(Q \) are normal forms, the reduction of \(P \) and \(Q \) to \(N \) can only be the trivial reduction, i.e., \(P \), \(Q \), and \(N \) are identical. This justifies our speaking of the normal form of a term.

In viewing the lambda calculus as a model of computation, then, the normal form of a term can be thought of as the “final result” of the computation starting with that term. The above corollary means there’s only one, if any, final result of a computation, just like there is only one result of computing \(4 \times (1 + 2) + 3 \), namely 15.

Theorem cr.2. If a relation \(\rightarrow \) satisfies the Church-Rosser property, and \(\rightarrow \) is the smallest transitive relation containing \(\rightarrow \), then \(\rightarrow \) satisfies the Church-Rosser property too.

Proof. Suppose

\[
\begin{align*}
M & \rightarrow P_1 \rightarrow \ldots \rightarrow P_m \text{ and} \\
M & \rightarrow Q_1 \rightarrow \ldots \rightarrow Q_n.
\end{align*}
\]

We will prove the theorem by constructing a grid \(N \) of terms of height \(m + 1 \) and width \(n + 1 \). We use \(N_{i,j} \) to denote the term in the \(i \)-th row and \(j \)-th column.
We construct N in such a way that $N_{i,j} \xrightarrow{X} N_{i+1,j}$ and $N_{i,j} \xrightarrow{X} N_{i,j+1}$. It is defined as follows:

\[
\begin{align*}
N_{0,0} &= M \\
N_{i,0} &= P_i & \text{if } 1 \leq i \leq m \\
N_{0,j} &= Q_j & \text{if } 1 \leq j \leq n
\end{align*}
\]

and otherwise:

\[
N_{i,j} = R
\]

where R is a term such that $N_{i-1,j} \xrightarrow{X} R$ and $N_{i,j-1} \xrightarrow{X} R$. By the Church-Rosser property of \xrightarrow{X}, such a term always exists.

Now we have $N_{m,0} \xrightarrow{X} \ldots \xrightarrow{X} N_{m,n}$ and $N_{0,n} \xrightarrow{X} \ldots \xrightarrow{X} N_{m,n}$. Note $N_{m,0}$ is P and $N_{0,n}$ is Q. By definition of \xrightarrow{X} the theorem follows. \qed

Photo Credits

Bibliography