Chapter udf

The Church-Rosser Property

cr.1 Definition and Properties

In this chapter we introduce the concept of Church-Rosser property and some common properties of this property.

Definition cr.1 (Church-Rosser property, CR). A relation \(\rightarrow \) on terms is said to satisfy the Church-Rosser property iff, whenever \(M \rightarrow P \) and \(M \rightarrow Q \), then there exists some \(N \) such that \(P \rightarrow N \) and \(Q \rightarrow N \).

We can view the lambda calculus as a model of computation in which terms in normal form are “values” and a reducibility relation on terms are the “calculation rules.” The Church-Rosser property states is that when there is more than one way to proceed with a calculation, there is still only a single value of the expression.

To take an example from elementary algebra, there’s more than one way to calculate \(4 \times (1 + 2) + 3 \). It can either be reduced to \(4 \times 3 + 3 \) (if we first reduce \(1 + 2 \) to 3) or to \(4 \times 1 + 4 \times 2 + 3 \) (if we first reduce \(4 \times (1 + 2) \) using distributivity). Both of these, however, can be further reduced to \(12 + 3 \).

If we take \(\rightarrow \) to be \(\beta \)-reduction, we easily see that a consequence of the Church-Rosser property is that if a term has a normal form, then it is unique. For suppose \(M \) can be reduced to \(P \) and \(Q \), both of which are normal forms. By Church-Rosser property, there exists some \(N \) such that both \(P \) and \(Q \) reduce to it. Since by assumption \(P \) and \(Q \) are normal forms, the reduction of \(P \) and \(Q \) to \(N \) can only be the trivial reduction, i.e., \(P \), \(Q \), and \(N \) are identical. This justifies our speaking of the normal form of a term.

In viewing the lambda calculus as a model of computation, then, the normal form of a term can be thought of as the “final result” of the computation starting with that term. The above corollary means there’s only one, if any, final result of a computation, just like there is only one result of computing \(4 \times (1 + 2) + 3 \), namely 15.
Theorem cr.2. If a relation \rightarrow_X satisfies the Church-Rosser property, and $\rightarrow \rightarrow_X$ is the smallest transitive relation containing \rightarrow_X, then $\rightarrow \rightarrow_X$ satisfies the Church-Rosser property too.

Proof. Suppose

$$M \rightarrow_X P_1 \rightarrow \ldots \rightarrow_X P_m \text{ and }$$
$$M \rightarrow_X Q_1 \rightarrow \ldots \rightarrow_X Q_n.$$

We will prove the theorem by constructing a grid N of terms of height $m+1$ and width $n+1$. We use $N_{i,j}$ to denote the term in the i-th row and j-th column.

We construct N in such a way that $N_{i,j} \rightarrow_X N_{i+1,j}$ and $N_{i,j} \rightarrow_X N_{i,j+1}$. It is defined as follows:

$$N_{0,0} = M$$
$$N_{i,0} = P_i \quad \text{if } 1 \leq i \leq m$$
$$N_{0,j} = Q_j \quad \text{if } 1 \leq j \leq n$$

and otherwise:

$$N_{i,j} = R$$

where R is a term such that $N_{i-1,j} \rightarrow_X R$ and $N_{i,j-1} \rightarrow_X R$. By the Church-Rosser property of \rightarrow_X, such a term always exists.

Now we have $N_{m,0} \rightarrow_X \ldots \rightarrow_X N_{m,n}$ and $N_{0,n} \rightarrow_X \ldots \rightarrow_X N_{m,n}$. Note $N_{m,0}$ is P and $N_{0,n}$ is Q. By definition of $\rightarrow \rightarrow_X$ the theorem follows.

\hspace{1cm} \square

2 Parallel β-reduction

We introduce the notion of parallel β-reduction, and prove the it has the Church-Rosser property.

Definition cr.3 (parallel β-reduction, $\overset{\beta}{\Rightarrow}$). Parallel reduction ($\overset{\beta}{\Rightarrow}$) of terms is inductively defined as follows:

1. $x \overset{\beta}{\Rightarrow} x$.

2. If $N \overset{\beta}{\Rightarrow} N'$ then $\lambda x. N \overset{\beta}{\Rightarrow} \lambda x. N'$.

3. If $P \overset{\beta}{\Rightarrow} P'$ and $Q \overset{\beta}{\Rightarrow} Q'$ then $PQ \overset{\beta}{\Rightarrow} P'Q'$.

4. If $N \overset{\beta}{\Rightarrow} N'$ and $Q \overset{\beta}{\Rightarrow} Q'$ then $(\lambda x. N)Q \overset{\beta}{\Rightarrow} N'[Q'/x]$.

\hspace{1cm} church-rosser rev. 666b46f (2020-02-13) by OLP / CC–BY
Parallel β-reduction allows us to reduce any number of redices in a term in one step. It is different from β-reduction in the sense that we can only contract redices that occur in the original term, but not redices arising from parallel β-reduction. For example, the term $(\lambda f. fx)(\lambda y.y)$ can only be parallel β-reduced to itself or to $(\lambda y.y)x$, but not further to x, although it β-reduces to x, because this redex arises only after one step of parallel β-reduction. A second parallel β-reduction step yields x, though.

Theorem cr.4. $M \xrightarrow{\beta} M$.

Proof. Exercise. \square

Problem cr.1. Prove Theorem cr.4.

Definition cr.5 (β-complete development). The β-complete development M^\ast of M is defined inductively as follows:

\begin{align*}
x^\ast &= x & \text{(cr.1)} \\
(\lambda x. N)^\ast &= \lambda x. N^\ast & \text{(cr.2)} \\
(PQ)^\ast &= P^\ast Q^\ast & \text{if } P \text{ is not a } \lambda\text{-abstract} & \text{(cr.3)} \\
(\lambda x. NQ)^\ast &= N^\ast [Q^\ast /x] & \text{(cr.4)}
\end{align*}

The β-complete development of a term, as its name suggests, is a “complete parallel reduction.” While for parallel β-reduction we still can choose to not contract a redex, for complete development we have no choice but to contract all of them. Thus the complete development of $(\lambda f. fx)(\lambda y.y)$ is $(\lambda y.y)x$, not itself.

```latex
\begin{center}
This definition has the problem that we haven’t introduced how to define functions on (\lambda-)terms recursively. Will fix in future.
\end{center}
```

Lemma cr.6. If $M \xrightarrow{\beta} M'$ and $R \xrightarrow{\beta} R'$, then $M[R/y] \xrightarrow{\beta} M'[R'/y]$.

Proof. By induction on the derivation of $M \xrightarrow{\beta} M'$.

1. The last step is (1): Exercise.

2. The last step is (2): Then M is $\lambda x. N$ and M' is $\lambda x. N'$, where $N \xrightarrow{\beta} N'$.

 We want to prove that $(\lambda x. N)[R/y] \xrightarrow{\beta} (\lambda x. N')[R'/y]$, i.e., $\lambda x. N[R/y] \xrightarrow{\beta} \lambda x. N'[R/y]$. This follows immediately by (2) and the induction hypothesis.

3. The last step is (3): Exercise.
4. The last step is (4): \(M \) is \((\lambda x. N)Q\) and \(M' \) is \(N'[Q'/x] \). We want to prove that \(((\lambda x. N)Q)[R/y] \overset{\beta}{\rightarrow} N'[Q'/x][R'/y] \), i.e., \((\lambda x. N)[R/y])Q[R/y] \overset{\beta}{\rightarrow} N'[R'/y][Q'[R'/y]/x] \). This follows by (4) and the induction hypothesis.

\[\square \]

Problem cr.2. Complete the proof of Lemma cr.6.

Lemma cr.7. If \(M \overset{\beta}{\rightarrow} M' \) then \(M' \overset{\beta}{\rightarrow} M^{\ast\beta} \).

Proof. By induction on the derivation of \(M \overset{\beta}{\rightarrow} M' \).

1. The last rule is (1): Exercise.

2. The last rule is (2): \(M \) is \(\lambda x. N \) and \(M' \) is \(\lambda x. N' \) with \(N \overset{\beta}{\rightarrow} N' \). We want to show that \(\lambda x. N' \overset{\beta}{\rightarrow} (\lambda x. N)^{\ast\beta} \), i.e., \(\lambda x. N' \overset{\beta}{\rightarrow} \lambda x. N^{\ast\beta} \) by eq. (cr.2). It follows by (2) and the induction hypothesis.

3. The last rule is (3): \(M \) is \(PQ \) and \(M' \) is \(P'Q' \) for some \(P, Q, P' \) and \(Q' \), with \(P \overset{\beta}{\rightarrow} P' \) and \(Q \overset{\beta}{\rightarrow} Q' \). By induction hypothesis, we have \(P' \overset{\beta}{\rightarrow} P'^{\ast\beta} \) and \(Q' \overset{\beta}{\rightarrow} Q'^{\ast\beta} \).

 a) If \(P \) is \(\lambda x. N \) for some \(x \) and \(N \), then \(P' \) must be \(\lambda x. N' \) for some \(N' \) with \(N \overset{\beta}{\rightarrow} N' \). By induction hypothesis we have \(N' \overset{\beta}{\rightarrow} N'^{\ast\beta} \) and \(Q' \overset{\beta}{\rightarrow} Q'^{\ast\beta} \). Then \((\lambda x. N')Q' \overset{\beta}{\rightarrow} N'^{\ast\beta}[Q'^{\ast\beta}/x]\) by (4).

 b) If \(P \) is not a \(\lambda \)-abstract, then \(P'Q' \overset{\beta}{\rightarrow} P'^{\ast\beta}Q'^{\ast\beta} \) by (3), and the right-hand side is \(PQ'^{\ast\beta} \) by eq. (cr.3).

4. The last rule is (4): \(M \) is \((\lambda x. N)Q\) and \(M' \) is \(N'[Q'/x] \) for some \(x, N, Q, N', \) and \(Q' \), with \(N \overset{\beta}{\rightarrow} N' \) and \(Q \overset{\beta}{\rightarrow} Q' \). By induction hypothesis we know \(N' \overset{\beta}{\rightarrow} N'^{\ast\beta} \) and \(Q' \overset{\beta}{\rightarrow} Q'^{\ast\beta} \). By Lemma cr.6 we have \(N'[Q'/x] \overset{\beta}{\rightarrow} N'^{\ast\beta}[Q'^{\ast\beta}/x] \), the right-hand side of which is exactly \((\lambda x. N)Q)^{\ast\beta} \).

\[\square \]

Problem cr.3. Complete the proof of Lemma cr.7.

Theorem cr.8. \(\overset{\beta}{\rightarrow} \) has the Church-Rosser property.

Proof. Immediate from Lemma cr.7.

\[\square \]
Lemma cr.9. If \(M \xrightarrow{\beta} M' \), then \(M \xrightarrow{=} M' \).

Proof. If \(M \xrightarrow{\beta} M' \), then \(M \equiv (\lambda x.N)Q \), \(M' \equiv N[Q/x] \), for some \(x, N \), and \(Q \). Since \(N \xrightarrow{\beta} N \) and \(Q \xrightarrow{\beta} Q \) by Theorem cr.4, we immediately have \((\lambda x.N)Q \xrightarrow{\beta} N[Q/x]\) by Definition cr.3(4).

Lemma cr.10. If \(M \xrightarrow{\beta} M' \), then \(M \xrightarrow{\beta} M' \).

Proof. By induction on the derivation of \(M \xrightarrow{=} M' \).

1. The last rule is (1): Then \(M \) and \(M' \) are just \(x \) and \(x \xrightarrow{\beta} x \).
2. The last rule is (2): \(M \equiv \lambda x.N \) and \(M' \equiv \lambda x.N' \) for some \(x, N, N' \), where \(N \equiv \rightarrow N' \). By induction hypothesis we have \(N \xrightarrow{\beta} N' \). Then \(\lambda x.N \xrightarrow{\beta} \lambda x.N' \) (by the same series of \(\beta \) contractions as \(N \xrightarrow{\beta} N' \)).
3. The last rule is (3): \(M \equiv PQ \) and \(M' \equiv P'Q' \) for some \(P, Q, P', Q' \), where \(P \xrightarrow{\beta} P' \) and \(Q \xrightarrow{\beta} Q' \). By induction hypothesis we have \(P \xrightarrow{\beta} P' \) and \(Q \xrightarrow{\beta} Q' \). So \(PQ \xrightarrow{\beta} P'Q' \) by the reduction sequence \(P \xrightarrow{\beta} P' \) followed by the reduction \(Q \xrightarrow{\beta} Q' \).
4. The last rule is (4): \(M \equiv (\lambda x.N)Q \) and \(M' \equiv N'[Q'/x] \) for some \(x, N, M', Q, Q' \), where \(N \xrightarrow{\beta} N' \) and \(Q \xrightarrow{\beta} Q' \). By induction hypothesis we get \(Q \xrightarrow{\beta} Q' \) and \(N \xrightarrow{\beta} N' \). So \((\lambda x.N)Q \xrightarrow{\beta} N'[Q'/x]\) by \(N \xrightarrow{\beta} N' \) followed by \(Q \xrightarrow{\beta} Q' \) and finally contraction of \((\lambda x.N)Q' \) to \(N'[Q'/x] \).

Lemma cr.11. \(\xrightarrow{\beta} \) is the smallest transitive relation containing \(\xrightarrow{=} \).

Proof. Let \(\xrightarrow{X} \) be the smallest transitive relation containing \(\xrightarrow{=} \).

- \(\xrightarrow{\beta} \subseteq \xrightarrow{X} \): Suppose \(M \xrightarrow{\beta} M' \), i.e., \(M \equiv M_1 \xrightarrow{\beta} \ldots \xrightarrow{\beta} M_k \equiv M' \). By Lemma cr.9, \(M \equiv M_1 \xrightarrow{\beta} \ldots \xrightarrow{\beta} M_k \equiv M' \). Since \(\xrightarrow{X} \) contains \(\xrightarrow{=} \) and is transitive, \(M \xrightarrow{X} M' \).
- \(\xrightarrow{X} \subseteq \xrightarrow{\beta} \): Suppose \(M \xrightarrow{X} M' \), i.e., \(M \equiv M_1 \xrightarrow{\beta} \ldots \xrightarrow{\beta} M_k \equiv M' \). By Lemma cr.10, \(M \equiv M_1 \xrightarrow{\beta} \ldots \xrightarrow{\beta} M_k \equiv M' \). Since \(\xrightarrow{\beta} \) is transitive, \(M \xrightarrow{\beta} M' \).

Theorem cr.12. \(\xrightarrow{\beta} \) satisfies the Church-Rosser property.

Proof. Immediate from Theorem cr.2, Theorem cr.8, and Lemma cr.11.
cr.4 Parallel $\beta\eta$-reduction

In this section we prove the Church-Rosser property for parallel $\beta\eta$-reduction, the parallel reduction notion corresponding to $\beta\eta$-reduction.

Definition cr.13 (Parallel $\beta\eta$-reduction, $\equiv_{\beta\eta}$). Parallel $\beta\eta$-reduction ($\equiv_{\beta\eta}$) on terms is inductively defined as follows:

1. $x \equiv_{\beta\eta} x$.
2. If $N \equiv_{\beta} N'$ then $\lambda x. N \equiv_{\beta\eta} \lambda x. N'$.
3. If $P \equiv_{\beta\eta} P'$ and $Q \equiv_{\beta\eta} Q'$ then $PQ \equiv_{\beta\eta} P'Q'$.
4. If $N \equiv_{\beta\eta} N'$ and $Q \equiv_{\beta\eta} Q'$ then $(\lambda x. N)Q \equiv_{\beta\eta} N'[Q'/x]$.
5. If $N \equiv_{\beta\eta} N'$ then $\lambda x. Nx \equiv_{\beta\eta} N'$, provided $x \notin \text{FV}(N)$.

Theorem cr.14. $M \equiv_{\beta\eta} M$.

Proof. Exercise.

Problem cr.4. Prove Theorem cr.14.

Definition cr.15 ($\beta\eta$-complete development). The $\beta\eta$-complete development $M^{*}_{\beta\eta}$ of M is defined as follows:

1. $x^{*}_{\beta\eta} = x$ (cr.5)
2. $(\lambda x. N)^{*}_{\beta\eta} = \lambda x. N^{*}_{\beta\eta}$ (cr.6)
3. $(PQ)^{*}_{\beta\eta} = P^{*}_{\beta\eta}Q^{*}_{\beta\eta}$ if P is not a λ-abstract (cr.7)
4. $((\lambda x. N)Q)^{*}_{\beta\eta} = N^{*\beta\eta}[Q^{*\beta\eta}/x]$ (cr.8)
5. $(\lambda x. Nx)^{*}_{\beta\eta} = N^{*\beta\eta}$ if $x \notin \text{FV}(N)$ (cr.9)

Lemma cr.16. If $M \equiv_{\beta\eta} M'$ and $R \equiv_{\beta\eta} R'$, then $M[R/y] \equiv_{\beta\eta} M'[R'/y]$.

Proof. By induction on the derivation of $M \equiv_{\beta\eta} M'$.

The first four cases are exactly like those in Lemma cr.6. If the last rule is (5), then M is $\lambda x. Nx$, M' is N' for some x and N' where $x \notin \text{FV}(N)$, and $N \equiv_{\beta\eta} N'$. We want to show that $(\lambda x. N)[R/y] \equiv_{\beta\eta} N'[R'/y]$, i.e., $\lambda x. N[R/y][x] \equiv_{\beta\eta} N'[R'/y]$. It follows by Definition cr.13(5) and the induction hypothesis.

Lemma cr.17. If $M \equiv_{\beta\eta} M'$ then $M' \equiv_{\beta\eta} M^{*\beta\eta}$.
Proof. By induction on the derivation of $M \beta\eta \Rightarrow M'$.

The first four cases are like those in Lemma cr.7. If the last rule is (5), then M is $\lambda x. N x$ and M' is N' for some x, N, N' where $x \notin FV(N)$ and $N \beta\eta N'$. We want to show that $N' \beta\eta (\lambda x. N x)^* \beta\eta$, i.e., $N' \beta\eta N^* \beta\eta$, which is immediate by induction hypothesis.

\textbf{Theorem cr.18.} $\beta\eta$ has the Church-Rosser property.

\textit{Proof.} Immediate from Lemma cr.17. \qed

\section{\textbf{cr.5} $\beta\eta$-reduction}

The Church-Rosser property holds for $\beta\eta$-reduction ($\beta\eta$).

\textbf{Lemma cr.19.} If $M \beta\eta M'$, then $M \beta\eta M'$.

\textit{Proof.} By induction on the derivation of $M \beta\eta M'$. If $M \beta M'$ by η-conversion (i.e., ??), we use Theorem cr.14. The other cases are as in Lemma cr.9. \qed

\textbf{Lemma cr.20.} If $M \beta\eta M'$, then $M \beta\eta \beta\eta M'$.

\textit{Proof.} Induction on the derivation of $M \beta\eta M'$.

If the last rule is (5), then M is $\lambda x. N x$ and M' is N' for some x, N, N' where $x \notin FV(N)$ and $N \beta\eta N'$. Thus we can first reduce $\lambda x. N x$ to N by η-conversion, followed by the series of $\beta\eta$ steps that show that $N \beta\eta N'$, which holds by induction hypothesis. \qed

\textbf{Lemma cr.21.} $\beta\eta$ is the smallest transitive relation containing $\beta\eta$.

\textit{Proof.} As in Lemma cr.11. \qed

\textbf{Theorem cr.22.} $\beta\eta$ satisfies Church-Rosser property.

\textit{Proof.} By Theorem cr.2, Theorem cr.18 and Lemma cr.21. \qed

\section*{Photo Credits}
Bibliography