cr.1 β-reduction

Lemma cr.1. If \(M \rightarrow M' \), then \(M \Rightarrow M' \).

Proof. If \(M \rightarrow M' \), then \(M \) is \((\lambda x. N)Q \), \(M' \) is \(N[Q/x] \), for some \(x \), \(N \), and \(Q \). Since \(N \Rightarrow N \) and \(Q \Rightarrow Q \) by ???, we immediately have \((\lambda x. N)Q \Rightarrow N[Q/x] \) by ???.

Lemma cr.2. If \(M \rightarrow M' \), then \(M \rightarrow M' \).

Proof. By induction on the derivation of \(M \rightarrow M' \).

1. The last rule is ???: Then \(M \) and \(M' \) are just \(x \), and \(x \rightarrow x \).

2. The last rule is ???: \(M \) is \(\lambda x. N \) and \(M' \) is \(\lambda x. N' \) for some \(x \), \(N \), \(N' \), where \(N \Rightarrow N' \). By induction hypothesis we have \(N \rightarrow N' \). Then \(\lambda x. N \rightarrow \lambda x. N' \) (by the same series of \(\rightarrow \) contractions as \(N \rightarrow N' \)).

3. The last rule is ???: \(M \) is \(PQ \) and \(M' \) is \(P'Q' \) for some \(P \), \(Q \), \(P' \), \(Q' \), where \(P \rightarrow P' \) and \(Q \rightarrow Q' \). By induction hypothesis we have \(P \rightarrow P' \) and \(Q \rightarrow Q' \). So \(PQ \rightarrow P'Q' \) by the reduction sequence \(P \rightarrow P' \) followed by the reduction \(Q \rightarrow Q' \).

4. The last rule is ???: \(M \) is \((\lambda x. N)Q \) and \(M' \) is \(N'[Q'/x] \) for some \(x \), \(N \), \(M' \), \(Q \), \(Q' \), where \(N \Rightarrow N' \) and \(Q \Rightarrow Q' \). By induction hypothesis we get \(Q \rightarrow Q' \) and \(N \rightarrow N' \). So \((\lambda x. N)Q \rightarrow N'[Q'/x] \) by \(N \rightarrow N' \) followed by \(Q \rightarrow Q' \) and finally contraction of \((\lambda x. N')Q' \) to \(N'[Q'/x] \).

Lemma cr.3. \(\rightarrow \) is the smallest transitive relation containing \(\Rightarrow \).

Proof. Let \(\bar{\rightarrow} \) be the smallest transitive relation containing \(\Rightarrow \).

\(\bar{\rightarrow} \subseteq \bar{\rightarrow} \): Suppose \(M \bar{\rightarrow} M' \), i.e., \(M \equiv M_1 \bar{\rightarrow} \ldots \bar{\rightarrow} M_k \equiv M' \). By **Lemma cr.1**, \(M \equiv M_1 \bar{\rightarrow} \ldots \bar{\rightarrow} M_k \equiv M' \). Since \(\bar{\rightarrow} \) contains \(\Rightarrow \) and is transitive, \(M \bar{\rightarrow} M' \).

\(\bar{\rightarrow} \subseteq \bar{\rightarrow} \): Suppose \(M \bar{\rightarrow} M' \), i.e., \(M \equiv M_1 \bar{\rightarrow} \ldots \bar{\rightarrow} M_k \equiv M' \). By **Lemma cr.2**, \(M \equiv M_1 \bar{\rightarrow} \ldots \bar{\rightarrow} M_k \equiv M' \). Since \(\bar{\rightarrow} \) is transitive, \(M \bar{\rightarrow} M' \).

Theorem cr.4. \(\bar{\rightarrow} \) satisfies the Church-Rosser property.
Proof. Immediate from ??, ??, and Lemma cr.3. □

Photo Credits

Bibliography