The Church-Rosser property holds for $\beta\eta$-reduction ($\xrightarrow{\beta\eta}$).

Lemma cr.1. If $M \xrightarrow{\beta\eta} M'$, then $M \xrightarrow{\beta\eta} M'$.

Proof. By induction on the derivation of $M \xrightarrow{\beta\eta} M'$. If $M \xrightarrow{\beta} M'$ by η-conversion (i.e., $\xrightarrow{\eta}$), we use $\xrightarrow{\eta}$. The other cases are as in $\xrightarrow{\beta\eta}$. □

Lemma cr.2. If $M \xrightarrow{\beta\eta} M'$, then $M \xrightarrow{\beta\eta} M'$.

Proof. Induction on the derivation of $M \xrightarrow{\beta\eta} M'$.

If the last rule is $\xrightarrow{\beta\eta}$, then $M = \lambda x. N x$ and M' is N' for some x, N, N' where $x \notin FV(N)$ and $N \xrightarrow{\beta\eta} N'$. Thus we can first reduce $\lambda x. N x$ to N by η-conversion, followed by the series of $\xrightarrow{\beta\eta}$ steps that show that $N \xrightarrow{\beta\eta} N'$, which holds by induction hypothesis. □

Lemma cr.3. $\xrightarrow{\beta\eta}$ is the smallest transitive relation containing $\xrightarrow{\beta\eta}$.

Proof. As in $\xrightarrow{\beta\eta}$. □

Theorem cr.4. $\xrightarrow{\beta\eta}$ satisfies Church-Rosser property.

Proof. By $\xrightarrow{\beta\eta}$, $\xrightarrow{\beta\eta}$ and Lemma cr.3. □

Photo Credits

Bibliography