
tab.1 Countermodels from Tableaux

nml:tab:cou:
sec

explanationThe proof of the completeness theorem doesn’t just show that if ⊨ φ then ⊢ φ,
it also gives us a method for constructing countermodels to φ if ⊭ A. In the case
of K, this method constitutes a decision procedure. For suppose ⊭ φ. Then the
proof of ?? gives a method for constructing a complete tableau. The method
in fact always terminates. The propositional rules for K only add prefixed
formulas of lower complexity, i.e., each propositional rule need only be applied
once on a branch for any signed formula σ Sφ. New prefixes are only generated
by the □F and ♢T rules, and also only have to be applied once (and produce a
single new prefix). □T and ♢F have to be applied potentially multiple times,
but only once per prefix, and only finitely many new prefixes are generated.
So the construction either results in a closed branch or a complete branch after
finitely many stages.

Once a tableau with an open complete branch is constructed, the proof of
?? gives us an explict model that satisfies the original set of prefixed formulas.
So not only is it the case that if Γ ⊨ φ, then a closed tableau exists and Γ ⊢ φ,
if we look for the closed tableau in the right way and end up with a “complete”
tableau, we’ll not only know that Γ ⊭ φ but actually be able to construct a
countermodel.

Example tab.1. We know that ⊬ □(p∨ q)→ (□p∨□q). The construction of
a tableau begins with:

1.
2.
3.
4.
5.
6.
7.

1F □(p ∨ q)→ (□p ∨□q) ✓
1T □(p ∨ q)

1F □p ∨□q ✓
1F □p ✓
1F □q ✓
1.1F p ✓
1.2F q ✓

Assumption
→F 1
→F 1
∨F 3
∨F 3
□F 4
□F 5

The tableau is of course not finished yet. In the next step, we consider the
only line without a checkmark: the prefixed formula 1T□(p∨q) on line 2. The
construction of the closed tableau says to apply the □T rule for every prefix
used on the branch, i.e., for both 1.1 and 1.2:

1.
2.
3.
4.
5.
6.
7.
8.
9.

1F □(p ∨ q)→ (□p ∨□q) ✓
1T □(p ∨ q)

1F □p ∨□q ✓
1F □p ✓
1F □q ✓
1.1F p ✓
1.2F q ✓
1.1T p ∨ q
1.2T p ∨ q

Assumption
→F 1
→F 1
∨F 3
∨F 3
□F 4
□F 5
□T 2
□T 2

countermodels rev: 6c541de (2024-02-28) by OLP / CC–BY 1

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


1
¬p
¬q

1.1
¬p
q 1.2

p
¬q

Figure 1: A countermodel to □(p ∨ q)→ (□p ∨□q).

nml:tab:cou:

fig:counter-Box

Now lines 2, 8, and 9, don’t have checkmarks. But no new prefix has been
added, so we apply ∨T to lines 8 and 9, on all resulting branches (as long as
they don’t close):

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

11.

1F □(p ∨ q)→ (□p ∨□q) ✓
1T □(p ∨ q)

1F □p ∨□q ✓
1F □p ✓
1F □q ✓
1.1F p ✓
1.2F q ✓

1.1T p ∨ q ✓
1.2T p ∨ q ✓

1.1T p ✓
⊗

1.1T q ✓

1.2T p ✓ 1.2T q ✓
⊗

Assumption
→F 1
→F 1
∨F 3
∨F 3
□F 4
□F 5
□T 2
□T 2

∨T 8

∨T 9

There is one remaining open branch, and it is complete. From it we define the
model with worlds W = {1, 1.1, 1.2} (the only prefixes appearing on the open
branch), the accessibility relation R = {⟨1, 1.1⟩, ⟨1, 1.2⟩}, and the assignment
V (p) = {1.2} (because line 11 contains 1.2Tp) and V (q) = {1.1} (because
line 10 contains 1.1Tq). The model is pictured in Figure 1, and you can verify
that it is a countermodel to □(p ∨ q)→ (□p ∨□q).

Photo Credits

Bibliography

2


	Countermodels from Tableaux
	Photo Credits
	Bibliography

