tab.1 Countermodels from Tableaux

nml:tab:cou: sec

The proof of the completeness theorem doesn't just show that if $\vDash \varphi$ then $\vdash \varphi$, explanation it also gives us a method for constructing countermodels to φ if $\nvDash A$. In the case of \mathbf{K} , this method constitutes a decision procedure. For suppose $\nvDash \varphi$. Then the proof of ?? gives a method for constructing a complete tableau. The method in fact always terminates. The propositional rules for \mathbf{K} only add prefixed formulas of lower complexity, i.e., each propositional rule need only be applied once on a branch for any signed formula $\sigma S \varphi$. New prefixes are only generated by the $\Box \mathbb{F}$ and $\Diamond \mathbb{T}$ rules, and also only have to be applied once (and produce a single new prefix). $\Box \mathbb{T}$ and $\Diamond \mathbb{F}$ have to be applied potentially multiple times, but only once per prefix, and only finitely many new prefixes are generated. So the construction either results in a closed branch or a complete branch after finitely many stages.

Once a tableau with an open complete branch is constructed, the proof of $\ref{eq:proof:eq:pr$

Example tab.1. We know that $\nvdash \Box (p \lor q) \to (\Box p \lor \Box q)$. The construction of a tableau begins with:

1.	$1 \mathbb{F} \Box (p \lor q) \to (\Box p \lor \Box q) \checkmark$	Assumption
2.	$1 \mathbb{T} \Box (p \lor q)$	$\rightarrow \mathbb{F} 1$
3.	$1 \mathbb{F} \Box p \lor \Box q \checkmark$	$\rightarrow \mathbb{F} 1$
4.	$1 \mathbb{F} \Box p \checkmark$	$\vee \mathbb{F} 3$
5.	$1 \mathbb{F} \Box q \checkmark$	$\vee \mathbb{F} 3$
6.	$1.1\mathbb{F}p\checkmark$	$\square \mathbb{F} 4$
7.	$1.2\mathbb{F}q\checkmark$	$\square \mathbb{F} 5$

The tableau is of course not finished yet. In the next step, we consider the only line without a checkmark: the prefixed formula $1 \mathbb{T} \square (p \vee q)$ on line 2. The construction of the closed tableau says to apply the $\square \mathbb{T}$ rule for every prefix used on the branch, i.e., for both 1.1 and 1.2:

1.	$1 \mathbb{F} \square (p \vee q) \to (\square p \vee \square q) \checkmark$	Assumption
2.	$1 \mathbb{T} \Box (p \lor q)$	$\rightarrow \mathbb{F} 1$
3.	$1 \mathbb{F} \Box p \lor \Box q \checkmark$	$\rightarrow \mathbb{F} 1$
4.	$1 \mathbb{F} \Box p \checkmark$	$\vee \mathbb{F} 3$
5.	$1 \mathbb{F} \Box q \checkmark$	$\vee \mathbb{F} 3$
6.	$1.1\mathbb{F}p\checkmark$	$\square \mathbb{F} 4$
7.	$1.2\mathbb{F}q\checkmark$	$\square \mathbb{F} 5$
8.	$1.1\mathbb{T}\ pee q$	$\Box \mathbb{T} 2$
9.	$1.2\mathbb{T}$ $p \lor q$	$\Box \mathbb{T} 2$

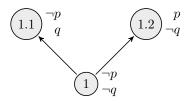


Figure 1: A countermodel to $\Box(p \lor q) \to (\Box p \lor \Box q)$.

nml:tab:cou: fig:counter-Box

Now lines 2, 8, and 9, don't have checkmarks. But no new prefix has been added, so we apply $\vee \mathbb{T}$ to lines 8 and 9, on all resulting branches (as long as they don't close):

1.	$1 \mathbb{F} \ \Box (p \vee q) \to (\Box p \vee \Box q) \checkmark$	Assumption
2.	$1 \mathbb{T} \Box (p \lor q)$	$\rightarrow \mathbb{F} 1$
3.	$1 \mathbb{F} \Box p \vee \Box q \checkmark$	$\rightarrow \mathbb{F} 1$
4.	$1 \mathbb{F} \Box p \checkmark$	$\vee \mathbb{F} 3$
5.	$1 \mathbb{F} \Box q \checkmark$	$\vee \mathbb{F} 3$
6.	$1.1\mathbb{F}p\checkmark$	$\Box \mathbb{F} 4$
7.	$1.2\mathbb{F}$ q \checkmark	$\square \mathbb{F} 5$
8.	$1.1\mathbb{T}\ p\lor q\checkmark$	$\Box \mathbb{T} 2$
9.	$1.2\mathbb{T}$ $p \lor q \checkmark$	$\Box \mathbb{T} 2$
10.	$1.1 \widehat{\mathbb{T}} p \checkmark \qquad \qquad 1.1 \widehat{\mathbb{T}} q \checkmark$	$\vee \mathbb{T} 8$
	\otimes	
11.	$1.2\overline{\mathbb{T}} \ p \checkmark \qquad 1.2\overline{\mathbb{T}} \ q \checkmark$	$\vee \mathbb{T} 9$
	× × × × × × × × × × × × × × × × × × ×	

There is one remaining open branch, and it is complete. From it we define the model with worlds $W = \{1, 1.1, 1.2\}$ (the only prefixes appearing on the open branch), the accessibility relation $R = \{\langle 1, 1.1 \rangle, \langle 1, 1.2 \rangle\}$, and the assignment $V(p) = \{1.2\}$ (because line 11 contains $1.2 \mathbb{T}p$) and $V(q) = \{1.1\}$ (because line 10 contains $1.1 \mathbb{T}q$). The model is pictured in Figure 1, and you can verify that it is a countermodel to $\Box(p \lor q) \to (\Box p \lor \Box q)$.

Photo Credits

Bibliography