sc.1 Soundness of Axiomatic Derivations

The soundness proof relies on the fact that all axioms are intuitionistically valid; this still needs to be proved, e.g., in the Semantics chapter.

Theorem sc.1 (Soundness). If \(\Gamma \vdash \varphi \), then \(\Gamma \models \varphi \).

Proof. We prove that if \(\Gamma \vdash \varphi \), then \(\Gamma \models \varphi \). The proof is by induction on the number \(n \) of formulas in the derivation of \(\varphi \) from \(\Gamma \). We show that if \(\varphi_1, \ldots, \varphi_n = \varphi \) is a derivation from \(\Gamma \), then \(\Gamma \models \varphi_n \). Note that if \(\varphi_1, \ldots, \varphi_n \) is a derivation, so is \(\varphi_1, \ldots, \varphi_k \) for any \(k < n \).

There are no derivations of length 0, so for \(n = 0 \) the claim holds vacuously. So the claim holds for all derivations of length \(< n \). We distinguish cases according to the justification of \(\varphi_n \).

1. \(\varphi_n \) is an axiom. All axioms are valid, so \(\Gamma \models \varphi_n \) for any \(\Gamma \).

2. \(\varphi_n \in \Gamma \). Then for any \(M \) and \(w \), if \(M, w \models \Gamma \), obviously \(M \models \Gamma \varphi_n[w] \), i.e., \(\Gamma \models \varphi \).

3. \(\varphi_n \) follows by mp from \(\varphi_i \) and \(\varphi_j \equiv \varphi_i \rightarrow \varphi_n \). \(\varphi_1, \ldots, \varphi_i \) and \(\varphi_1, \ldots, \varphi_j \), \(\ldots, \varphi_n \) are derivations from \(\Gamma \), so by inductive hypothesis, \(\Gamma \models \varphi_i \) and \(\Gamma \models \varphi_i \rightarrow \varphi_n \).

 Suppose \(M, w \models \Gamma \). Since \(M, w \models \Gamma \) and \(\Gamma \models \varphi_i \rightarrow \varphi_n \), \(M, w \models \varphi_i \rightarrow \varphi_n \).

 By definition, this means that for all \(w' \) such that \(Rww' \), if \(M, w' \models \varphi_i \) then \(M, w' \models \varphi_n \). Since \(R \) is reflexive, \(w \) is among the \(w' \) such that \(Rww' \), i.e., we have that if \(M, w \models \varphi_i \) then \(M, w \models \varphi_n \). Since \(\Gamma \models \varphi_i \), \(M, w \models \varphi_i \.

 So, \(M, w \models \varphi_n \), as we wanted to show.

\[\square \]

Photo Credits

Bibliography