sc.1 Soundness of Axiomatic Derivations int:sc:sax: The soundness proof relies on the fact that all axioms are intuitionistically valid; this still needs to be proved, e.g., in the Semantics chapter. int:sc:sax: thm:soundness **Theorem sc.1** (Soundness). If $\Gamma \vdash \varphi$, then $\Gamma \vDash \varphi$. *Proof.* We prove that if $\Gamma \vdash \varphi$, then $\Gamma \vDash \varphi$. The proof is by induction on the number n of formulas in the derivation of φ from Γ . We show that if φ_1 , ..., $\varphi_n = \varphi$ is a derivation from Γ , then $\Gamma \vDash \varphi_n$. Note that if $\varphi_1, \ldots, \varphi_n$ is a derivation, so is $\varphi_1, \ldots, \varphi_k$ for any k < n. There are no derivations of length 0, so for n=0 the claim holds vacuously. So the claim holds for all derivations of length < n. We distinguish cases according to the justification of φ_n . - 1. φ_n is an axiom. All axioms are valid, so $\Gamma \vDash \varphi_n$ for any Γ . - 2. $\varphi_n \in \Gamma$. Then for any \mathfrak{M} and w, if $\mathfrak{M}, w \Vdash \Gamma$, obviously $\mathfrak{M} \Vdash \Gamma \varphi_n[w]$, i.e., $\Gamma \vDash \varphi$. - 3. φ_n follows by MP from φ_i and $\varphi_j \equiv \varphi_i \to \varphi_n$. $\varphi_1, \ldots, \varphi_i$ and $\varphi_1, \ldots, \varphi_j$ are derivations from Γ , so by inductive hypothesis, $\Gamma \vDash \varphi_i$ and $\Gamma \vDash \varphi_i \to \varphi_n$. Suppose $\mathfrak{M}, w \Vdash \Gamma$. Since $\mathfrak{M}, w \Vdash \Gamma$ and $\Gamma \vDash \varphi_i \to \varphi_n$, $\mathfrak{M}, w \Vdash \varphi_i \to \varphi_n$. By definition, this means that for all w' such that Rww', if $\mathfrak{M}, w' \Vdash \varphi_i$ then $\mathfrak{M}, w' \Vdash \varphi_n$. Since R is reflexive, w is among the w' such that Rww', i.e., we have that if $\mathfrak{M}, w \Vdash \varphi_i$ then $\mathfrak{M}, w \Vdash \varphi_n$. Since $\Gamma \vDash \varphi_i, \mathfrak{M}, w \Vdash \varphi_i$. So, $\mathfrak{M}, w \Vdash \varphi_n$, as we wanted to show. **Photo Credits** Bibliography