Decidability

Observe that the proof of the completeness theorem gives us for every $\Gamma \not\vdash \varphi$ a model with an infinite number of worlds witnessing the fact that $\Gamma \not\models \varphi$. The following proposition shows that to prove $\models \varphi$ it is enough to prove that $\mathcal{M} \models \varphi$ for all finite models (i.e., models with a finite set of worlds).

Theorem sc.1. If $\not\models \varphi$ then there is a finite model $\mathcal{M}' \not\models \varphi$.

Proof. Assume $\mathcal{M} = \langle W, R, V \rangle$ is such that $\mathcal{M} \not\models \varphi$ and P is the set of propositional variables occurring in φ. Define $\mathcal{M}' = \langle W', R', V' \rangle$ by letting $W' = \{ [w] : w \in W \}$ where $[w] = \{ p \in P : w \in V(p) \}$, R' be the subset relation, and $V'(p) = \{ [w] : p \in [w] \}$. It should be clear that W' is a finite set and that \mathcal{M}' is a relational model.

It can be shown, by induction on φ, that

$$\mathcal{M}, w \models \varphi \text{ iff } \mathcal{M}', [w] \models \varphi$$

for all formulas φ with only propositional variables from P. This is left as an exercise for the reader. \hfill \square

Problem sc.1. Finish the proof of Theorem sc.1 by showing that $\mathcal{M}, w \models \varphi$ iff $\mathcal{M}', [w] \models \varphi$ for all formulas φ with only propositional variables from P.

From Theorem sc.1 it follows that there is an algorithm to decide whether $\models \varphi$.

Photo Credits

Bibliography