sem.1 Topological Semantics

int:sem:top: Another way to provide a semantics for intuitionistic logic is using the mathesec matical concept of a topology.

Definition sem.1. Let X be a set. A topology on X is a set $\mathcal{O} \subseteq \wp(X)$ that satisfies the properties below. The elements of \mathcal{O} are called the *open sets* of the topology. The set X together with \mathcal{O} is called a topological space.

- 1. The empty set and the entire space are open: \emptyset , $X \in \mathcal{O}$.
- 2. Open sets are closed under finite intersections: if $U, V \in \mathcal{O}$ then $U \cap V \in \mathcal{O}$
- 3. Open sets are closed under arbitrary unions: if $U_i \in \mathcal{O}$ for all $i \in I$, then $\bigcup \{U_i : i \in I\} \in \mathcal{O}$.

We may write X for a topology if the collection of open sets can be inferred from the context; note that, still, only after X is endowed with open sets can it be called a topology.

Definition sem.2. A topological model of intuitionistic propositional logic is a triple $\mathfrak{X} = \langle X, \mathcal{O}, V \rangle$ where \mathcal{O} is a topology on X and V is a function assigning an open set in \mathcal{O} to each propositional variable.

Given a topological model \mathfrak{X} , we can define $[\varphi]_{\mathfrak{X}}$ inductively as follows:

- 1. $[\bot]_{\mathfrak{X}} = \emptyset$
- 2. $[p]_{\mathfrak{X}} = V(p)$
- 3. $[\varphi \land \psi]_{\mathfrak{X}} = [\varphi]_{\mathfrak{X}} \cap [\psi]_{\mathfrak{X}}$
- 4. $[\varphi \lor \psi]_{\mathfrak{X}} = [\varphi]_{\mathfrak{X}} \cup [\psi]_{\mathfrak{X}}$
- 5. $[\varphi \to \psi]_{\mathfrak{X}} = \operatorname{Int}((X \setminus [\varphi]_{\mathfrak{X}}) \cup [\psi]_{\mathfrak{X}})$

Here, Int(V) is the function that maps a set $V \subseteq X$ to its *interior*, that is, the union of all open sets it contains. In other words,

$$\operatorname{Int}(V) = \bigcup \{ U : U \subseteq V \text{ and } U \in \mathcal{O} \}.$$

Note that the interior of any set is always open, since it is a union of open sets. Thus, $[\varphi]_{\mathfrak{X}}$ is always an open set.

Although topological semantics is highly abstract, there are ways to think about it that might motivate it. Suppose that the elements, or "points," of Xare points at which statements can be evaluated. The set of all points where φ is true is the proposition expressed by φ . Not every set of points is a potential proposition; only the elements of \mathcal{O} are. $\varphi \vDash \psi$ iff ψ is true at every point at which φ is true, i.e., $[\varphi]_{\mathfrak{X}} \subseteq [\psi]_{\mathfrak{X}}$, for all X. The absurd statement \bot is never true, so $[\bot]_{\mathfrak{X}} = \emptyset$. How must the propositions expressed by $\psi \wedge \chi$, $\psi \vee \chi$, and $\psi \to \chi$ be related to those expressed by ψ and χ for the intuitionistically valid laws to hold, i.e., so that $\varphi \vdash \psi$ iff $[\varphi]_{\mathfrak{X}} \subset [\psi]_{\mathfrak{X}}$? We require $\bot \vdash \varphi$ for any φ , which is satisfied because $\emptyset \subseteq U$ for all U. Since $\psi \wedge \chi \vdash \psi$, we require that $[\psi \wedge \chi]_{\mathfrak{X}} \subseteq [\psi]_{\mathfrak{X}}$, and similarly $[\psi \wedge \chi]_{\mathfrak{X}} \subseteq [\chi]_{\mathfrak{X}}$. The largest set satisfying $W \subseteq U$ and $W \subseteq V$ is $U \cap V$. Conversely, $\psi \vdash \psi \lor \chi$ and $\chi \vdash \psi \lor \chi$, and so we require that $[\psi]_{\mathfrak{X}} \subseteq [\psi \lor \chi]_{\mathfrak{X}}$ and $[\chi]_{\mathfrak{X}} \subseteq [\psi \lor \chi]_{\mathfrak{X}}$. The smallest set W such that $U \subseteq W$ and $V \subseteq W$ is $U \cup V$.

The definition for \rightarrow is tricky: $\varphi \rightarrow \psi$ expresses the weakest proposition that, combined with φ , entails ψ . That $\varphi \rightarrow \psi$ combined with φ entails ψ is clear from $(\varphi \rightarrow \psi) \land \varphi \vdash \psi$. So $[\varphi \rightarrow \psi]_{\mathfrak{X}}$ should be the greatest open set such that $[\varphi \rightarrow \psi]_{\mathfrak{X}} \cap [\varphi]_{\mathfrak{X}} \subset [\psi]_{\mathfrak{X}}$, leading to our definition.

Photo Credits

Bibliography