
Chapter udf

Semantics

This chapter collects definitions for semantics for intuitionistic logic.
So far only Kripke and topological semantics are covered. There are no
examples yet, either of how models make formulas true or of proofs that
formulas are valid.

sem.1 Introduction

int:sem:int:
sec

No logic is satisfactorily described without a semantics, and intuitionistic logic
is no exception. Whereas for classical logic, the semantics based on valuations is
canonical, there are several competing semantics for intuitionistic logic. None of
them are completely satisfactory in the sense that they give an intuitionistically
acceptable account of the meanings of the connectives.

The semantics based on relational models, similar to the semantics for
modal logics, is perhaps the most popular one. In this semantics, proposi-
tional variables are assigned to worlds, and these worlds are related by an
accessibility relation. That relation is always a partial order, i.e., it is reflexive,
antisymmetric, and transitive.

Intuitively, you might think of these worlds as states of knowledge or “evi-
dentiary situations.” A state w′ is accessible from w iff, for all we know, w′ is
a possible (future) state of knowledge, i.e., one that is compatible with what’s
known at w. Once a proposition is known, it can’t become un-known, i.e.,
whenever ϕ is known at w and Rww′, ϕ is known at w′ as well. So “knowl-
edge” is monotonic with respect to the accessibility relation.

If we define “ϕ is known” as in epistemic logic as “true in all epistemic
alternatives,” then ϕ ∧ ψ is known at w if in all epistemic alternatives, both ϕ
and ψ are known. But since knowledge is monotonic and R is reflexive, that
means that ϕ ∧ ψ is known at w iff ϕ and ψ are known at w. For the same
reason, ϕ ∨ ψ is known at w iff at least one of them is known. So for ∧ and ∨,
the truth conditions of the connectives coincide with those in classical logic.
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The truth conditions for the conditional, however, differ from classical logic.
ϕ→ψ is known at w iff at no w′ with Rww′, ϕ is known without ψ also being
known. This is not the same as the condition that ϕ is unknown or ψ is known
at w. For if we know neither ϕ nor ψ at w, there might be a future epistemic
state w′ with Rww′ such that at w′, ϕ is known without also coming to know ψ.

We know ¬ϕ only if there is no possible future epistemic state in which
we know ϕ. Here the idea is that if ϕ were knowable, then in some possible
future epistemic state ϕ becomes known. Since we can’t know ⊥, in that future
epistemic state, we would know ϕ but not know ⊥.

On this interpretation the principle of excluded middle fails. For there are
some ϕ which we don’t yet know, but which we might come to know. For such
an ϕ, both ϕ and ¬ϕ are unknown, so ϕ ∨ ¬ϕ is not known. But we do know,
e.g., that ¬(ϕ ∧ ¬ϕ). For no future state in which we know both ϕ and ¬ϕ is
possible, and we know this independently of whether or not we know ϕ or ¬ϕ.

Relational models are not the only available semantics for intuitionistic
logic. The topological semantics is another: here propositions are interpreted
as open sets in a topological space, and the connectives are interpreted as
operations on these sets (e.g., ∧ corresponds to intersection).

sem.2 Relational models

int:sem:rel:
sec

In order to give a precise semantics for intuitionistic propositional logic, we
have to give a definition of what counts as a model relative to which we can
evaluate formulas. On the basis of such a definition it is then also possible to
define semantics notions such as validity and entailment. One such semantics
is given by relational models.

Definition sem.1. A relational model for intuitionistic propositional logic is
a triple M = 〈W,R, V 〉, where

1. W is a non-empty set,

2. R is a reflexive and transitive binary relation on W , and

3. V is function assigning to each propositional variable p a subset of W ,
such that

4. V is monotone with respect to R, i.e., if w ∈ V (p) and Rww′, then
w′ ∈ V (p).

Definition sem.2. int:sem:rel:

defn:true-at-w

We define the notion of ϕ being true at w in M, M, w  ϕ,
inductively as follows:

1. ϕ ≡ p: M, w  ϕ iff w ∈ V (p).

2. ϕ ≡ ⊥: not M, w  ϕ.

3. ϕ ≡ ¬ψ: M, w  ϕ iff for no w′ such that Rww′, M, w′  ψ.
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4. ϕ ≡ ψ ∧ χ: M, w  ϕ iff M, w  ψ and M, w  χ.

5. ϕ ≡ ψ ∨ χ: M, w  ϕ iff M, w  ψ or M, w  χ (or both).

6. ϕ ≡ ψ→χ: M, w  ϕ iff for every w′ such that Rww′, not M, w  ψ or
M, w  χ (or both).

We write M, w 1 ϕ if not M, w  ϕ. If Γ is a set of formulas, M, w  Γ means
M, w  ψ for all ψ ∈ Γ .

Problem sem.1. Show that according to Definition sem.2, M, w  ¬ϕ iff
M, w  ϕ→⊥.

Proposition sem.3.int:sem:rel:

prop:true-monotonic

Truth at worlds is monotonic with respect to R, i.e., if
M, w  ϕ and Rww′, then M, w′  ϕ.

Proof. Exercise.

Problem sem.2. Prove Proposition sem.3.

sem.3 Semantic Notions

int:sem:sem:
sec

Definition sem.4. We say ϕ is true in the model M = 〈W,R, V,w0〉, M  ϕ,
iff M, w  ϕ for all w ∈ W . ϕ is valid, � ϕ, iff it is true in all models. We say
a set of formulas Γ entails ϕ, Γ � ϕ, iff for every model M and every w such
that M, w  Γ , M, w  ϕ.

Proposition sem.5.int:sem:sem:

prop:sat-entails

1.int:sem:sem:

prop:sat-entails1

If M, w  Γ and Γ � ϕ, then M, w  ϕ.

2.int:sem:sem:

prop:sat-entails2

If M  Γ and Γ � ϕ, then M  ϕ.

Proof. 1. Suppose M  Γ . Since Γ � ϕ, we know that if M, w  Γ , then
M, w  ϕ. Since M, u  Γ for all every u ∈ W , M, w  Γ . Hence
M, w  ϕ.

2. Follows immediately from (1).

sem.4 Topological Semantics

int:sem:top:
sec

Another way to provide a semantics for intuitionistic logic is using the mathe-
matical concept of a topology.

Definition sem.6. Let X be a set. A topology on X is a set O ⊆ ℘(X) that
satisfies the properties below. The elements of O are called the open sets of
the topology. The set X together with O is called a topological space.
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1. The empty set and the entire space open: ∅, X ∈ O.

2. Open sets are closed under finite intersections: if U , V ∈ O then U ∩V ∈
O

3. Open sets are closed under arbitrary unions: if Ui ∈ O for all i ∈ I, then⋃
{Ui : i ∈ I} ∈ O.

We may write X for a topology if the collection of open sets can be inferred
from the context; note that, still, only after X is endowed with open sets can
it be called a topology.

Definition sem.7. A topological model of intuitionistic propositional logic is a
triple X = 〈X,O, V 〉 where O is a topology on X and V is a function assigning
an open set in O to each propositional variable.

Given a topological model X, we can define [[ϕ]]X inductively as follows:

1. V (⊥) = ∅

2. [[p]]X = V (p)

3. [[ϕ ∧ ψ]]X = [[ϕ]]X ∩ [[ψ]]X

4. [[ϕ ∨ ψ]]X = [[ϕ]]X ∪ [[ψ]]X

5. [[ϕ→ ψ]]X = Int((X \ [[ϕ]]X) ∪ [[ψ]]X)

Here, Int(V ) is the function that maps a set V ⊆ X to its interior, that is, the
union of all open sets it contains. In other words,

Int(V ) =
⋃
{U : U ⊆ V and U ∈ O}.

Note that the interior of any set is always open, since it is a union of open
sets. Thus, [[ϕ]]X is always an open set.

Although topological semantics is highly abstract, there are ways to think
about it that might motivate it. Suppose that the elements, or “points,” of X
are points at which statements can be evaluated. The set of all points where ϕ
is true is the proposition expressed by ϕ. Not every set of points is a potential
proposition; only the elements of O are. ϕ � ψ iff ψ is true at every point at
which ϕ is true, i.e., [[ϕ]]X ⊆ [[ψ]]X, for all X. The absurd statement ⊥ is never
true, so [[⊥]]X = ∅. How must the propositions expressed by ψ ∧ χ, ψ ∨ χ, and
ψ→ χ be related to those expressed by ψ and χ for the intuitionistically valid
laws to hold, i.e., so that ϕ ` ψ iff [[ϕ]]X ⊂ [[ψ]]X. ⊥ ` ϕ for any ϕ, and only
∅ ⊆ U for all U . Since ψ∧χ ` ψ, [[ψ∧χ]]X ⊆ [[ψ]]X, and similarly [[ψ∧χ]]X ⊆ [[χ]]X.
The largest set satisfying W ⊆ U and W ⊆ V is U ∩ V . Conversely, ψ ` ψ ∨ χ
and χ ` ψ ∨ χ, and so [[ψ]]X ⊆ [[ψ ∨ χ]]X and [[χ]]X ⊆ [[ψ ∨ χ]]X. The smallest
set W such that U ⊆W and V ⊆W is U ∪ V . The definition for → is tricky:
ϕ → ψ expresses the weakest proposition that, combined with ϕ, entails ψ.
That ϕ→ ψ combined with ϕ entails ψ is clear from (ϕ→ ψ) ∧ ϕ ` ψ. So
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[[ϕ→ ψ]]X should be the greatest open set such that [[ϕ→ ψ]]X ∩ [[ϕ]]X ⊂ [[ψ]]X,
leading to our definition.
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