sem.1 Semantic Notions int:sem:sem: **Definition sem.1.** We say φ is true in the model $\mathfrak{M} = \langle W, R, V, w_0 \rangle$, $\mathfrak{M} \Vdash \varphi$, iff $\mathfrak{M}, w \Vdash \varphi$ for all $w \in W$. φ is valid, $\vDash \varphi$, iff it is true in all models. We say a set of formulas Γ entails φ , $\Gamma \vDash \varphi$, iff for every model \mathfrak{M} and every w such that $\mathfrak{M}, w \Vdash \Gamma$, $\mathfrak{M}, w \Vdash \varphi$. prop:sat-entails ## int:sem:sem: Proposition sem.2. int:sem:sem: prop:sat-entails1 1. If $\mathfrak{M}, w \Vdash \Gamma$ and $\Gamma \vDash \varphi$, then $\mathfrak{M}, w \Vdash \varphi$. $int:sem:sem:\\prop:sat-entails2$ 2. If $\mathfrak{M} \Vdash \Gamma$ and $\Gamma \vDash \varphi$, then $\mathfrak{M} \Vdash \varphi$. *Proof.* 1. Suppose $\mathfrak{M} \Vdash \Gamma$. Since $\Gamma \vDash \varphi$, we know that if $\mathfrak{M}, w \Vdash \Gamma$, then $\mathfrak{M}, w \Vdash \varphi$. Since $\mathfrak{M}, u \Vdash \Gamma$ for all every $u \in W$, $\mathfrak{M}, w \Vdash \Gamma$. Hence $\mathfrak{M}, w \Vdash \varphi$. 2. Follows immediately from (1). ## **Photo Credits** ## Bibliography