sem.1 Semantic Notions

int:sem:sem:

sec

Definition sem.1. We say φ is *true in the model* $\mathfrak{M} = \langle W, R, V \rangle$, $\mathfrak{M} \Vdash \varphi$, iff $\mathfrak{M}, w \Vdash \varphi$ for all $w \in W$. φ is *valid*, $\vDash \varphi$, iff it is true in all models. We say a set of formulas Γ *entails* φ , $\Gamma \vDash \varphi$, iff for every model \mathfrak{M} and every w such that $\mathfrak{M}, w \Vdash \Gamma$, $\mathfrak{M}, w \Vdash \varphi$.

int:sem:sem: Proposition sem.2.

1. If $\mathfrak{M}, w \Vdash \Gamma$ and $\Gamma \vDash \varphi$, then $\mathfrak{M}, w \Vdash \varphi$.

int:sem:sem: prop:sat-entails1 int:sem:sem: prop:sat-entails2

prop: sat-entails

2. If $\mathfrak{M} \Vdash \Gamma$ and $\Gamma \vDash \varphi$, then $\mathfrak{M} \Vdash \varphi$.

Proof. 1. Suppose $\mathfrak{M} \Vdash \Gamma$. Since $\Gamma \vDash \varphi$, we know that if $\mathfrak{M}, w \Vdash \Gamma$, then $\mathfrak{M}, w \Vdash \varphi$. Since $\mathfrak{M}, u \Vdash \Gamma$ for all every $u \in W, \mathfrak{M}, w \Vdash \Gamma$. Hence $\mathfrak{M}, w \Vdash \varphi$.

2. Follows immediately from (1).

int:sem:sem: **Definition sem.3.** Suppose \mathfrak{M} is a relational model and $w \in W$. The *re*defn:restrict striction $\mathfrak{M}_w = \langle W_w, R_w, V_w \rangle$ of \mathfrak{M} to w is given by:

$$W_w = \{u \in W : Rwu\},\$$

$$R_w = R \cap (W_w)^2, \text{ and}$$

$$V_w(p) = V(p) \cap W_w.$$

int:sem:sem: prop:restrict

Problem sem.1. Prove Proposition sem.4.

Proposition sem.4. $\mathfrak{M}, w \Vdash \varphi$ *iff* $\mathfrak{M}_w \Vdash \varphi$.

Proposition sem.5. Suppose for every model \mathfrak{M} such that $\mathfrak{M} \Vdash \Gamma$, $\mathfrak{M} \Vdash \varphi$. Then $\Gamma \vDash \varphi$.

Proof. Suppose that $\mathfrak{M}, w \Vdash \Gamma$. By the Proposition sem.4 applied to every $\psi \in \Gamma$, we have $\mathfrak{M}_w \Vdash \Gamma$. By the assumption, we have $\mathfrak{M}_w \Vdash \varphi$. By Proposition sem.4 again, we get $\mathfrak{M}, w \Vdash \varphi$.

Photo Credits

Bibliography