sem.1 Semantic Notions

Definition sem.1. We say φ is true in the model $\mathcal{M} = \langle W, R, V \rangle$, $\mathcal{M} \vDash \varphi$, iff $\mathcal{M}, w \vDash \varphi$ for all $w \in W$. φ is valid, $\vDash \varphi$, iff it is true in all models. We say a set of formulas Γ entails φ, $\Gamma \vDash \varphi$, iff for every model \mathcal{M} and every w such that $\mathcal{M}, w \vDash \Gamma$, $\mathcal{M}, w \vDash \varphi$.

Proposition sem.2.

1. If $\mathcal{M}, w \vDash \Gamma$ and $\Gamma \vDash \varphi$, then $\mathcal{M}, w \vDash \varphi$.
2. If $\mathcal{M} \vDash \Gamma$ and $\Gamma \vDash \varphi$, then $\mathcal{M} \vDash \varphi$.

Proof.

1. Suppose $\mathcal{M} \vDash \Gamma$. Since $\Gamma \vDash \varphi$, we know that if $\mathcal{M}, w \vDash \Gamma$, then $\mathcal{M}, w \vDash \varphi$. Since $\mathcal{M}, u \vDash \Gamma$ for all every $u \in W$, $\mathcal{M}, w \vDash \varphi$. Hence $\mathcal{M}, w \vDash \varphi$.

2. Follows immediately from (1).

Photo Credits

Bibliography