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Now let us consider the other direction: translating terms back to natural
deduction trees. We will use still use the double refutation of the excluded
middle as example, and let S denote this term, i.e.,

λy(ϕ∨(ϕ→⊥))→⊥. y(inϕ
2 (λxϕ. yinϕ→⊥

1 (x))) : ((ϕ ∨ (ϕ→⊥)) →⊥) →⊥

For each natural deduction rule, the term in the conclusion is always formed
by wrapping some operator around the terms assigned to the premise(s). Rules
correspond uniquely to such operators. For example, from the structure of the
S we infer that the last rule applied must be →Intro, since it is of the form
λy.... . . ., and the λ operator corresponds to →Intro. In general we can recover
the skeleton of the derivation solely by the structure of the term, e.g.,

[y :]2

[y :]2

[x]1
∨Intro1

inϕ→⊥
1 (x) :

→Elim
y(inϕ→⊥

1 (x)) :
1 →Intro
λxϕ. y(inϕ→⊥

1 (x)) :
∨Intro2

inϕ
2 (λxϕ. yinϕ→⊥

1 (x)) :
→Elim

y(inϕ
2 (λxϕ. yinϕ→⊥

1 (x))) :
2 →Intro
λy(ϕ∨(ϕ→⊥))→⊥. y(inϕ

2 (λxϕ. y(inϕ→⊥
1 (x)))) :

Our next step is to recover the formulas these terms witness. We define a
function F (Γ,M) which denotes the formula witnessed by M in context Γ , by
induction on M as follows:

F (Γ, x) = Γ (x)

F (Γ, 〈N1, N2〉 = F (Γ,N1) ∧ F (Γ,N2)

F (Γ,pi(N) = ϕi if F (Γ,N) = ϕ1 ∧ ϕ2

F (Γ, inϕ
i (N) =

{
F (N) ∨ ϕ if i = 1

ϕ ∨ F (N) if i = 2

F (Γ, case(M,x1.N1, x2.N2)) = F (Γ ∪ {xi : F (Γ,M)}, Ni)

F (Γ, λxϕ. N) = ϕ→ F (Γ ∪ {x : ϕ}, N)

F (Γ,NM) = ψ if F (Γ,N) = ϕ→ ψ

where Γ (x) means the formula mapped to by x in Γ and Γ ∪ {x : ϕ} is a
context exactly as Γ except mapping x to ϕ, whether or not x is already in Γ .

Note there are cases where F (Γ,M) is not defined, for example:

1. In the first line, it is possible that x is not in Γ .

2. In recursive cases, the inner invocation may be undefined, making the
outer one undefined too.
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3. In the third line, its only defined when F (Γ,M) is of the form ϕ1 ∨ ϕ2,
and the right hand is independent on i.

As we recursively compute F (Γ,M), we work our way up the natural deduc-
tion derivation. The every step in the computation of F (Γ,M) corresponds to
a term in the derivation to which the derivation-to-term translation assigns M ,
and the formula computed is the end-formula of the derivation. However, the
result may not be defined for some choices of Γ . We say that such pairs 〈Γ,M〉
are ill-typed, and otherwise well-typed. However, if the term M results from
translating a derivation, and the formulas in Γ correspond to the undischarged
assumptions of the derivation, the pair 〈Γ,M〉 will be well-typed.

Proposition pty.1. If D is a derivation with undischarged assumptions ϕ1,
. . . , ϕn, M is the proof term associated with D and Γ = {x1 : ϕ1, . . . , xn : ϕn},
then the result of recovering derivation from M in context Γ is D.

In the other direction, if we first translate a typing pair to natural deduction
and then translate it back, we won’t get the same pair back since the choice of
variables for the undischarged assumptions is underdetermined. For example,
consider the pair 〈{x : ϕ, y : ϕ→ ψ}, yx〉. The corresponding derivation is

ϕ→ ψ ϕ
→Elim

ψ

By assigning different variables to the undischarged assumptions, say, u to
ϕ → ψ and v to ϕ, we would get the term uv rather than yx. There is a
connection, though: the terms will be the same up to renaming of variables.

Now we have established the correspondence between typing pairs and nat-
ural deduction, we can prove theorems for typing pairs and transfer the result
to natural deduction derivations.

Similar to what we did in the natural deduction section, we can make some
observations here too. Let Γ ` M : ϕ denote that there is a pair (Γ,M)
witnessing the formula ϕ. Then always Γ ` x : ϕ if x : ϕ ∈ Γ , and the
following rules are valid:

Γ `M1 : ϕ1 ∆ `M2 : ϕ2 ∧Intro
Γ,∆ ` 〈M1,M2〉 : ϕ1 ∧ ϕ2

Γ `M : ϕ1 ∧ ϕ2 ∧Elimi
Γ ` pi(M) : ϕi

Γ `M1 : ϕ1 ∨Intro1
Γ ` inϕ2

1 (M) : ϕ1 ∨ ϕ2

Γ `M2 : ϕ2 ∨Intro2
Γ ` inϕ1

2 (M) : ϕ1 ∨ ϕ2

Γ `M : ϕ ∨ ψ ∆1, x1 : ϕ1 ` N1 : χ ∆2, x2 : ϕ2 ` N2 : χ
∨Elim

Γ,∆,∆′ ` case(M,x1.N1, x2.N2) : χ

Γ, x : ϕ ` N : ψ
→Intro

Γ ` λxϕ. N : ϕ→ ψ

Γ ` Q : ϕ ∆ ` P : ϕ→ ψ
→Elim

Γ,∆ ` PQ : ψ

Γ `M : ⊥ ⊥Elim
Γ ` contrϕ(M) : ϕ
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These are the typing rules of the simply typed lambda calculus extended
with product, sum and bottom.

In addition, the F (Γ,M) is actually a type checking algorithm; it returns
the type of the term with respect to the context, or is undefined if the term is
ill-typed with respect to the context.
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