Let us write $\Gamma \Rightarrow \phi$ if there is a natural deduction derivation with Γ as undischarged assumptions and ϕ as conclusion; or $\Rightarrow \phi$ if Γ is empty.

We write $\Gamma, \phi_1, \ldots, \phi_n$ for $\Gamma \cup \{\phi_1, \ldots, \phi_n\}$, and Γ, Δ for $\Gamma \cup \Delta$.

Observe that when we have $\Gamma \Rightarrow \phi \land \psi$, meaning we have a derivation with Γ as undischarged assumptions and $\phi \land \psi$ as end-formula, then by applying \landElim at the bottom, we can get a derivation with the same undischarged assumptions and ϕ as conclusion. In other words, if $\Gamma \Rightarrow \phi \land \psi$, then $\Gamma \Rightarrow \phi$.

$$\frac{\Gamma \Rightarrow \phi \land \psi}{\Gamma \Rightarrow \phi} \land\text{Elim}$$

The label \landElim hints at the relation with the rule of the same name in natural deduction.

Likewise, suppose we have $\Gamma, \varphi \Rightarrow \psi$, meaning we have a derivation with undischarged assumptions Γ, φ and end-formula ψ. If we apply the \RightarrowIntro rule, we have a derivation with Γ as undischarged assumptions and $\varphi \Rightarrow \psi$ as the end-formula, i.e., $\Gamma \Rightarrow \varphi \Rightarrow \psi$. Note how this has made the discharge of assumptions more explicit.

$$\frac{\Gamma, \varphi \Rightarrow \psi}{\Gamma \Rightarrow \varphi \Rightarrow \psi} \Rightarrow\text{Intro}$$

We can draw conclusions from other rules in the same fashion, which is spelled out as follows:

$$\frac{\Gamma \Rightarrow \varphi}{\Gamma, \Delta \Rightarrow \varphi \land \psi} \land\text{Intro}$$

$$\frac{\Gamma \Rightarrow \phi \land \psi}{\Gamma \Rightarrow \phi} \land\text{Elim}_1$$

$$\frac{\Gamma \Rightarrow \phi \land \psi}{\Gamma \Rightarrow \psi} \land\text{Elim}_2$$

$$\frac{\Gamma \Rightarrow \varphi \lor \psi}{\Gamma \Rightarrow \varphi} \lor\text{Intro}_1$$

$$\frac{\Gamma \Rightarrow \varphi \lor \psi}{\Gamma \Rightarrow \psi} \lor\text{Intro}_2$$

$$\frac{\Gamma \Rightarrow \varphi \lor \psi}{\Delta, \varphi \Rightarrow \chi} \lor\text{Elim}$$

$$\frac{\Gamma, \varphi \Rightarrow \psi}{\Gamma \Rightarrow \varphi \Rightarrow \psi} \Rightarrow\text{Intro}$$

$$\frac{\Delta \Rightarrow \varphi \Rightarrow \psi}{\Delta \Rightarrow \psi} \Rightarrow\text{Elim}$$

Any assumption by itself is a derivation of φ from φ, i.e., we always have $\varphi \Rightarrow \varphi$.

Together, these rules can be taken as a calculus about what natural deduction derivations exist. They can also be taken as a notational variant of natural deduction, in which each step records not only the formula derived but also the undischarged assumptions from which it was derived.
\[
\frac{\varphi \Rightarrow \varphi}{\varphi \Rightarrow \varphi \lor (\varphi \rightarrow \bot)} \quad \psi \Rightarrow \psi
\]
\[
\varphi, \psi \Rightarrow \Rightarrow \bot
\]
\[
(\psi \Rightarrow \varphi \rightarrow \bot)
\]
\[
(\psi \Rightarrow \varphi \lor (\varphi \rightarrow \bot)) \quad (\psi \Rightarrow \psi)
\]
\[
(\psi \Rightarrow \bot)
\]
\[
\Rightarrow \psi \rightarrow \bot
\]

where ψ is short for $(\varphi \lor (\varphi \rightarrow \bot)) \rightarrow \bot$.

Photo Credits

Bibliography