Introduction

Historically the lambda calculus and intuitionistic logic were developed separately. Haskell Curry and William Howard independently discovered a close similarity: types in a typed lambda calculus correspond to formulas in intuitionistic logic in such a way that a derivation of a formula corresponds directly to a typed lambda term with that formula as its type. Moreover, beta reduction in the typed lambda calculus corresponds to certain transformations of derivations.

For instance, a derivation of $\varphi \to \psi$ corresponds to a term $\lambda x^\varphi . N^\psi$, which has the function type $\varphi \to \psi$. The inference rules of natural deduction correspond to typing rules in the typed lambda calculus, e.g.,

\[
\begin{array}{c}
[\varphi]^x \\
\vdots \\
\vdots \\
\hline
z \\
\hline
\varphi \to \psi \\
\hline
\text{Intro}
\end{array}
\]

corresponds to

\[
\begin{array}{c}
x : \varphi \Rightarrow N : \psi \\
\hline
\Rightarrow \lambda x^\varphi . N^\psi : \varphi \Rightarrow \psi \\
\hline
\Rightarrow \lambda
\end{array}
\]

where the rule on the right means that if x is of type φ and N is of type ψ, then $\lambda x^\varphi . N$ is of type $\varphi \to \psi$.

The \Rightarrow Elim rule corresponds to the typing rule for composition terms, i.e.,

\[
\begin{array}{c}
\varphi \to \psi \\
\hline
\Rightarrow P : \varphi \to \psi \\
\Rightarrow Q : \varphi \\
\hline
\Rightarrow P^\varphi \to \psi Q^\psi : \psi
\end{array}
\]

If a \Rightarrow Intro rule is followed immediately by a \Rightarrow Elim rule, the derivation can be simplified:

\[
\begin{array}{c}
[\varphi]^x \\
\vdots \\
\vdots \\
\hline
z \\
\hline
\varphi \to \psi \\
\hline
\text{Intro} \\
\hline
\varphi
\end{array}
\]

\[
\begin{array}{c}
\varphi \\
\hline
\Rightarrow \psi \\
\hline
\text{Elim} \\
\hline
\psi
\end{array}
\]

which corresponds to the beta reduction of lambda terms

\[(\lambda x^\varphi . P^\psi)Q \to P[Q/x].\]

Similar correspondences hold between the rules for \land and "product" types, and between the rules for \lor and "sum" types.

This correspondence between terms in the simply typed lambda calculus and natural deduction derivations is called the "Curry-Howard", or "propositions as types" correspondence. In addition to formulas (propositions) corresponding to types, and proofs to terms, we can summarize the correspondences as follows:
<table>
<thead>
<tr>
<th>logic</th>
<th>program</th>
</tr>
</thead>
<tbody>
<tr>
<td>proposition</td>
<td>type</td>
</tr>
<tr>
<td>proof</td>
<td>term</td>
</tr>
<tr>
<td>assumption</td>
<td>variable</td>
</tr>
<tr>
<td>discharged assumption</td>
<td>bind variable</td>
</tr>
<tr>
<td>not discharged assumption</td>
<td>free variable</td>
</tr>
<tr>
<td>implication</td>
<td>function type</td>
</tr>
<tr>
<td>conjunction</td>
<td>product type</td>
</tr>
<tr>
<td>disjunction</td>
<td>sum type</td>
</tr>
<tr>
<td>absurdity</td>
<td>bottom type</td>
</tr>
</tbody>
</table>

The Curry-Howard correspondence is one of the cornerstones of automated proof assistants and type checkers for programs, since checking a proof witnessing a proposition (as we did above) amounts to checking if a program (term) has the declared type.

Photo Credits

Bibliography