tcp.1 Q is C.e.-Complete

inc:tcp:qce:

Theorem tcp.1. Q is c.e. but not decidable. In fact, it is a complete c.e. set.

Proof. It is not hard to see that \mathbf{Q} is c.e., since it is the set of (codes for) sentences y such that there is a proof x of y in \mathbf{Q} :

$$Q = \{y : \exists x \operatorname{Prf}_{\mathbf{Q}}(x, y)\}.$$

But we know that $\operatorname{Prf}_{\mathbf{Q}}(x,y)$ is computable (in fact, primitive recursive), and any set that can be written in the above form is c.e.

Saying that it is a complete c.e. set is equivalent to saying that $K \leq_m Q$, where $K = \{x : \varphi_x(x) \downarrow \}$. So let us show that K is reducible to \mathbf{Q} . Since Kleene's predicate T(e, x, s) is primitive recursive, it is representable in \mathbf{Q} , say, by φ_T . Then for every x, we have

$$x \in K \to \exists s \, T(x, x, s)$$

 $\to \exists s \, (\mathbf{Q} \vdash \varphi_T(\overline{x}, \overline{x}, \overline{s}))$
 $\to \mathbf{Q} \vdash \exists s \, \varphi_T(\overline{x}, \overline{x}, s).$

Conversely, if $\mathbf{Q} \vdash \exists s \, \varphi_T(\overline{x}, \overline{x}, s)$, then, in fact, for some natural number n the formula $\varphi_T(\overline{x}, \overline{x}, \overline{n})$ must be true. Now, if T(x, x, n) were false, \mathbf{Q} would prove $\neg \varphi_T(\overline{x}, \overline{x}, \overline{n})$, since φ_T represents T. But then \mathbf{Q} proves a false formula, which is a contradiction. So T(x, x, n) must be true, which implies $\varphi_x(x) \downarrow$.

In short, we have that for every x, x is in K if and only if \mathbf{Q} proves $\exists s \, T(\overline{x}, \overline{x}, s)$. So the function f which takes x to (a code for) the sentence $\exists s \, T(\overline{x}, \overline{x}, s)$ is a reduction of K to \mathbf{Q} .

Photo Credits

Bibliography