Theorem tcp.2. Let T be any ω-consistent theory that includes Q. Then T is not decidable.

Proof. If T includes Q, then T represents the computable functions and relations. We need only modify the previous proof. As above, if $x \in K$, then T proves $\exists s \varphi_T(x, x, s)$. Conversely, suppose T proves $\exists s \varphi_T(x, x, s)$. Then x must be in K: otherwise, there is no halting computation of machine x on input x; since φ_T represents Kleene’s T relation, T proves $\neg\varphi_T(x, x, 0), \neg\varphi_T(x, x, 1), \ldots$, making T ω-inconsistent. \square

Photo Credits

Bibliography