tcp.1 Introduction

This section should be rewritten.

We have the following:

1. A definition of what it means for a function to be representable in \mathcal{Q}
2. A definition of what it means for a relation to be representable in \mathcal{Q}
3. A theorem asserting that the representable functions of \mathcal{Q} are exactly the computable ones
4. A theorem asserting that the representable relations of \mathcal{Q} are exactly the computable ones

A theory is a set of sentences that is deductively closed, that is, with the property that whenever T proves φ then φ is in T. It is probably best to think of a theory as being a collection of sentences, together with all the things that these sentences imply. From now on, we will use \mathcal{Q} to refer to the theory consisting of the set of sentences derivable from the eight axioms.

Remember that we can code formulas of \mathcal{Q} as numbers; if φ is such a formula, let $\#\varphi#$ denote the number coding φ. Modulo this coding, we can now ask whether various sets of formulas are computable or not.

Photo Credits

Bibliography