Remember that a theory is consistent if it does not prove both \(\varphi \) and \(\neg \varphi \) for any formula \(\varphi \). Since anything follows from a contradiction, an inconsistent theory is trivial: every sentence is provable. Clearly, if a theory is \(\omega \)-consistent, then it is consistent. But being consistent is a weaker requirement (i.e., there are theories that are consistent but not \(\omega \)-consistent.). We can weaken the assumption in ?? to simple consistency to obtain a stronger theorem.

Lemma tcp.1. There is no “universal computable relation.” That is, there is no binary computable relation \(R(x, y) \), with the following property: whenever \(S(y) \) is a unary computable relation, there is some \(k \) such that for every \(y \), \(S(y) \) is true if and only if \(R(k, y) \) is true.

Proof. Suppose \(R(x, y) \) is a universal computable relation. Let \(S(y) \) be the relation \(\neg R(y, y) \). Since \(S(y) \) is computable, for some \(k \), \(S(y) \) is equivalent to \(R(k, y) \). But then we have that \(S(k) \) is equivalent to both \(R(k, k) \) and \(\neg R(k, k) \), which is a contradiction. \(\square \)

Theorem tcp.2. Let \(T \) be any consistent theory that includes \(Q \). Then \(T \) is not decidable.

Proof. Suppose \(T \) is a consistent, decidable extension of \(Q \). We will obtain a contradiction by using \(T \) to define a universal computable relation.

Let \(R(x, y) \) hold if and only if
\[
\begin{align*}
x & \text{ codes a formula } \theta(u), \text{ and } T \text{ proves } \theta(y).
\end{align*}
\]
Since we are assuming that \(T \) is decidable, \(R \) is computable. Let us show that \(R \) is universal. If \(S(y) \) is any computable relation, then it is representable in \(Q \) (and hence \(T \)) by a formula \(\theta_S(u) \). Then for every \(n \), we have
\[
S(\pi) \quad \rightarrow \quad T \vdash \theta_S(\pi)
\]
\[
\rightarrow \quad R(\#\theta_S(u)^\#, n)
\]
and
\[
\neg S(\pi) \quad \rightarrow \quad T \vdash \neg \theta_S(\pi)
\]
\[
\rightarrow \quad T \not\vdash \theta_S(\pi) \quad \text{(since } T \text{ is consistent)}
\]
\[
\rightarrow \quad \neg R(\#\theta_S(u)^\#, n).
\]
That is, for every \(y \), \(S(y) \) is true if and only if \(R(\#\theta_S(u)^\#, y) \) is. So \(R \) is universal, and we have the contradiction we were looking for. \(\square \)

Let “true arithmetic” be the theory \(\{ \varphi : N \models \varphi \} \), that is, the set of sentences in the language of arithmetic that are true in the standard interpretation.

Corollary tcp.3. True arithmetic is not decidable.