tcp.1 Theories Consistent with Q are Undecidable inc:tcp:con: The following theorem says that not only is \mathbf{Q} undecidable, but, in fact, any theory that does not disagree with \mathbf{Q} is undecidable. **Theorem tcp.1.** Let \mathbf{T} be any theory in the language of arithmetic that is consistent with \mathbf{Q} (i.e., $\mathbf{T} \cup \mathbf{Q}$ is consistent). Then \mathbf{T} is undecidable. *Proof.* Remember that **Q** has a finite set of axioms, Q_1, \ldots, Q_8 . We can even replace these by a single axiom, $\alpha = Q_1 \wedge \cdots \wedge Q_8$. Suppose T is a decidable theory consistent with Q. Let $$C = \{ \varphi : \mathbf{T} \vdash \alpha \to \varphi \}.$$ We show that C would be a computable separation of \mathbf{Q} and $\bar{\mathbf{Q}}$, a contradiction. First, if φ is in \mathbf{Q} , then φ is provable from the axioms of \mathbf{Q} ; by the deduction theorem, there is a proof of $\alpha \to \varphi$ in first-order logic. So φ is in C. On the other hand, if φ is in $\overline{\mathbf{Q}}$, then there is a proof of $\alpha \to \neg \varphi$ in first-order logic. If \mathbf{T} also proves $\alpha \to \varphi$, then \mathbf{T} proves $\neg \alpha$, in which case $\mathbf{T} \cup \mathbf{Q}$ is inconsistent. But we are assuming $\mathbf{T} \cup \mathbf{Q}$ is consistent, so \mathbf{T} does not prove $\alpha \to \varphi$, and so φ is not in C. We've shown that if φ is in \mathbf{Q} , then it is in C, and if φ is in $\overline{\mathbf{Q}}$, then it is in \overline{C} . So C is a computable separation, which is the contradiction we were looking for. This theorem is very powerful. For example, it implies: **Corollary tcp.2.** First-order logic for the language of arithmetic (that is, the set $\{\varphi : \varphi \text{ is provable in first-order logic}\}$) is undecidable. *Proof.* First-order logic is the set of consequences of \emptyset , which is consistent with \mathbf{Q} . **Photo Credits** **Bibliography**