tcp.1 **Axiomatizable Complete Theories are Decidable**

A theory is said to be *complete* if for every sentence \(\varphi \), either \(\varphi \) or \(\neg \varphi \) is provable.

Lemma tcp.1. *Suppose a theory \(T \) is complete and axiomatizable. Then \(T \) is decidable.*

Proof. Suppose \(T \) is complete and \(A \) is a computable set of axioms. If \(T \) is inconsistent, it is clearly computable. (Algorithm: “just say yes.”) So we can assume that \(T \) is also consistent.

To decide whether or not a sentence \(\varphi \) is in \(T \), simultaneously search for a derivation of \(\varphi \) from \(T \) and a derivation of \(\neg \varphi \). Since \(T \) is complete, you are bound to find one or the other; and since \(T \) is consistent, if you find a derivation of \(\neg \varphi \), there is no derivation of \(\varphi \).

Put in different terms, we already know that \(T \) is c.e.; so by a theorem we proved before, it suffices to show that the complement of \(T \) is c.e. also. But a formula \(\varphi \) is in \(\bar{T} \) if and only if \(\neg \varphi \) is in \(T \); so \(\bar{T} \leq_m T \).

Photo Credits

Bibliography