A theory is said to be complete if for every sentence φ, either φ or $\neg \varphi$ is provable.

Lemma tcp.1. Suppose a theory T is complete and axiomatizable. Then T is decidable.

Proof. Suppose T is complete and A is a computable set of axioms. If T is inconsistent, it is clearly computable. (Algorithm: “just say yes.”) So we can assume that T is also consistent.

To decide whether or not a sentence φ is in T, simultaneously search for a proof of φ from A and a proof of $\neg \varphi$. Since T is complete, you are bound to find one or another; and since T is consistent, if you find a proof of $\neg \varphi$, there is no proof of φ.

Put in different terms, we already know that T is c.e.; so by a theorem we proved before, it suffices to show that the complement of T is c.e. also. But a formula φ is in \bar{T} if and only if $\neg \varphi$ is in T; so $\bar{T} \leq_m T$. \qed

Photo Credits

Bibliography