tcp.1 Axiomatizable Complete Theories are Decidable

 $_{\rm sec}^{\rm inc:tcp:cdc:}$

A theory is said to be *complete* if for every sentence φ , either φ or $\neg \varphi$ is provable.

Lemma tcp.1. Suppose a theory T is complete and axiomatizable. Then T is decidable.

Proof. Suppose \mathbf{T} is complete and A is a computable set of axioms. If \mathbf{T} is inconsistent, it is clearly computable. (Algorithm: "just say yes.") So we can assume that \mathbf{T} is also consistent.

To decide whether or not a sentence φ is in **T**, simultaneously search for a proof of φ from A and a proof of $\neg \varphi$. Since **T** is complete, you are bound to find one or another; and since **T** is consistent, if you find a proof of $\neg \varphi$, there is no proof of φ .

Put in different terms, we already know that **T** is c.e.; so by a theorem we proved before, it suffices to show that the complement of **T** is c.e. also. But a formula φ is in $\bar{\mathbf{T}}$ if and only if $\neg \varphi$ is in $\bar{\mathbf{T}}$; so $\bar{\mathbf{T}} \leq_m \mathbf{T}$.

Photo Credits

Bibliography