We call a theory T undecidable if there is no computational procedure which, after finitely many steps and unfailingly, provides a correct answer to the question “does T prove φ?” for any sentence φ in the language of T. So Q would be decidable iff there were a computational procedure which decides, given a sentence φ in the language of arithmetic, whether $Q \vdash \varphi$ or not. We can make this more precise by asking: Is the relation $\text{Prov}_Q(y)$, which holds of y iff y is the Gödel number of a sentence provable in Q, recursive? The answer is: no.

Theorem req.1. Q is undecidable, i.e., the relation

$$
\text{Prov}_Q(y) \iff \text{Sent}(y) \land \exists x \text{Prf}_Q(x, y)
$$

is not recursive.

Proof. Suppose it were. Then we could solve the halting problem as follows: Given e and n, we know that $\varphi_e(n) \downarrow$ iff there is an s such that $T(e, n, s)$, where T is Kleene’s predicate from ??. Since T is primitive recursive it is representable in Q by a formula ψ_T, that is, $Q \vdash \psi_T(\bar{\pi}, \bar{\pi}, \bar{s})$ iff $T(e, n, s)$. If $Q \vdash \psi_T(\bar{\pi}, \bar{\pi}, \bar{s})$ then also $Q \vdash \exists y \psi_T(\bar{\pi}, \bar{\pi}, y)$. If no such s exists, then $Q \vdash \neg \psi_T(\bar{\pi}, \bar{\pi}, \bar{s})$ for every s. But Q is ω-consistent, i.e., if $Q \vdash \neg \varphi(\bar{n})$ for every $n \in \mathbb{N}$, then $Q \not\vdash \exists y \varphi(y)$. We know this because the axioms of Q are true in the standard model \mathbb{N}. So, $Q \not\vdash \exists y \psi_T(\bar{\pi}, \bar{\pi}, y)$. In other words, $Q \vdash \exists y \psi_T(\bar{\pi}, \bar{\pi}, y)$ iff there is an s such that $T(e, n, s)$, i.e., iff $\varphi_e(n) \downarrow$. From e and n we can compute $\# \exists y \psi_T(\bar{\pi}, \bar{\pi}, y)$, let $g(e, n)$ be the primitive recursive function which does that. So

$$
h(e, n) = \begin{cases}
1 & \text{if } \text{Prov}_Q(g(e, n)) \\
0 & \text{otherwise}.
\end{cases}
$$

This would show that h is recursive if Prov_Q is. But h is not recursive, by ??, so Prov_Q cannot be either. \square

Corollary req.2. First-order logic is undecidable.

Proof. If first-order logic were decidable, provability in Q would be as well, since $Q \vdash \varphi$ iff $\vdash \omega \rightarrow \varphi$, where ω is the conjunction of the axioms of Q. \square

Photo Credits

Bibliography