
inp.1 Σ1 completeness

inc:inp:s1c:
sec

Despite the incompleteness of Q and its consistent, axiomatizable extensions,
we have seen that Q does prove many basic facts about numerals. In fact, this
can be extended quite considerably. To understand the scope of what can be
proved in Q, we introduce the notions of ∆0, Σ1, and Π1 formulas. Roughly
speaking, a Σ1 formula is one of the form ∃xψ(x), where ψ is constructed using
only propositional connectives and bounded quantifiers. We shall show that if
φ is a Σ1 sentence which is true in N, then Q ⊢ φ (Theorem inp.7).

Definition inp.1.inc:inp:s1c:

defn:bd-quant

A bounded existential formula is one of the form ∃x (x <
t ∧ φ(x)) where t is any term, which we conventionally write as (∃x < t) φ(x).
A bounded universal formula is one of the form ∀x (x < t→ φ(x)) where t is
any term, which we conventionally write as (∀x < t) φ(x).

Definition inp.2.inc:inp:s1c:

defn:delta0-sigma1-pi1-frm

A formula ψ is ∆0 if it is built up from atomic formulas
using only propositional connectives and bounded quantification. A formula φ
is Σ1 if φ ≡ ∃xψ(x) where ψ is ∆0. A formula φ is Π1 if φ ≡ ∀xψ(x) where
ψ is ∆0.

Lemma inp.3.inc:inp:s1c:

lem:q-proves-clterm-id

Suppose t is a closed term such that ValN(t) = n. Then
Q ⊢ t = n.

Proof. We prove this by induction on the complexity of t. For the base case,
ValN(0) = 0, and Q ⊢ 0 = 0 since 0 ≡ 0. For the inductive case, let t1 and t2 be
terms such that ValN(t1) = n1, Val

N(t2) = n2, Q ⊢ t1 = n1, and Q ⊢ t2 = n2.
Then ValN((t′1)) = n1+1, and we have that Q ⊢ t′1 = n1

′ by the first-order
rules for identity applied to the induction hypothesis and the formula n1

′ = n1
′,

so we have Q ⊢ t′1 = n1 + 1 by the definition of numerals.
For sums we have

ValN((t1 + t2)) = ValN(t1) + ValN(t2) = n1 + n2.

By the induction hypothesis and the rules for identity, Q ⊢ t1 + t2 = n1 + t2,
and then Q ⊢ t1+ t2 = n1+n2 by a second application of the rules for identity.
By ??, Q ⊢ n1 + n2 = n1 + n2, so Q ⊢ t1 + t2 = n1 + n2.

Similar reasoning also works for ×, using ??. Since this exhausts the closed
terms of arithmetic, we have that Q ⊢ t = n for all closed terms t such that
ValN(t) = n.

Problem inp.1. Prove in detail the part of Lemma inp.3 involving ×.

Lemma inp.4.inc:inp:s1c:

lem:atomic-completeness

Suppose t1 and t2 are closed terms. Then

1. If ValN(t1) = ValN(t2), then Q ⊢ t1 = t2.

2. If ValN(t1) ̸= ValN(t2), then Q ⊢ t1 ̸= t2.

3. If ValN(t1) < ValN(t2), then Q ⊢ t1 < t2.
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4. If ValN(t2) ≤ ValN(t1), then Q ⊢ ¬(t1 < t2).

Proof. Given terms t1 and t2, we fix n = ValN(t1) and m = ValN(t2).
Suppose φ ≡ t1 = t2. By Lemma inp.3, Q ⊢ t1 = n and Q ⊢ t2 = n.

If n = m, then Q ⊢ n = m and hence Q ⊢ t1 = t2 by the transitivity of
identity. If n ̸= m then Q ⊢ n ̸= m, and by the transitivity of identity again,
Q ⊢ t1 ̸= t2.

Now let φ ≡ t1 < t2. For both cases, we rely on axiom Q8, which states
that x < y↔∃z z′ + x = y for all x, y.

Suppose N ⊨ t1 < t2. Then there exists some k ∈ N such that n+k+1 = m.
By Lemma inp.3, Q ⊢ t1 = n and Q ⊢ t2 = m, and by the first part of

this lemma, Q ⊢ n + k
′
= m. By the transitivity of identity it follows that

Q ⊢ k′ + t1 = t2, so Q ⊢ ∃z z′ + t1 = t2. By the right-to-left direction of Q8,
Q ⊢ t1 < t2.

Suppose instead that N ⊭ t1 < t2, i.e., m ≤ n. We work in Q and assume
that t1 < t2. By the left-to-right direction of Q8, there is some z such that
z′ + t1 = t2. Since Q ⊢ t1 = n and Q ⊢ t2 = m, z′ + n = m. By an external
induction on m using Q5, z

′ + n−m = 0. If m = n then z′ ̸= 0, giving a
contradiction via Q3. If m < n then (z′ + n−m− 1)′ = 0 by Q5 again, giving
a contradiction via Q3. So Q ⊢ ¬(t1 < t2).

Lemma inp.5. inc:inp:s1c:

lem:bounded-quant-equiv

Suppose φ is a formula, t a closed term, and k = ValN(t).
Then

1. Q ⊢ (∀x < t) φ(x) iff Q ⊢ φ(0) ∧ · · · ∧ φ(k − 1).

2. Q ⊢ (∃x < t) φ(x) iff Q ⊢ φ(0) ∨ · · · ∨ φ(k − 1).

Proof. We prove the case for the bounded universal quantifier. If ValN(t) = 0
then the left-hand side of the equivalence is provable in Q, because there is
no x < 0 by ??. Similarly, we can take an empty disjunction to be simply ⊤,
which is also provable in Q. We therefore suppose that ValN(t) = k + 1 for
some natural number k. By Lemma inp.3 we can assume that we are working
with a formula of the form (∀x < k + 1) φ(x).

Suppose that Q ⊢ (∀x < k + 1) φ(x), and let n ≤ k. Since Q ⊢ n < k + 1
by Lemma inp.4, it follows by logic that Q ⊢ φ(n). Applying this fact k + 1
times for each n ≤ k, we get that Q ⊢ φ(0) ∧ · · · ∧ φ(k) as desired.

For the other direction, suppose that Q ⊢ φ(0)∧ · · · ∧φ(k). Working in Q,
suppose that x < k + 1. By ?? we have that x = 0 ∨ · · · ∨ x = k, so by logic it
follows that φ(x), and hence the universal claim (∀x < k + 1) φ(x) follows.

The proof of the equivalence for bounded existentially quantified formulas
is similar.

Problem inp.2. Give a detailed proof of the existential case in Lemma inp.5.

Lemma inp.6. inc:inp:s1c:

lem:delta0-completeness

If φ is a ∆0 sentence which is true in N, then Q ⊢ φ.
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Proof. We prove this by induction on formula complexity. The base case is
given by Lemma inp.4, so we move to the induction step. For simplicity we split
the case of negation into subcases depending on the structure of the formula
to which the negation is applied.

1. Suppose (φ∧ψ) is true in N, so φ and ψ are true in N. By the induction
hypothesis, Q ⊢ φ and Q ⊢ ψ, so Q ⊢ (φ ∧ ψ) by logic.

2. Suppose ¬(φ∧ψ) is true in N, so either ¬φ or ¬ψ is true in N. Without
loss of generality, suppose the former. By the induction hypothesis Q ⊢
¬φ, and hence Q ⊢ ¬(φ ∧ ψ) by logic.

3. Suppose (φ ∨ ψ) is true in N, so either φ is true in N or ψ is true in N.
Without loss of generality, suppose the former holds. By the induction
hypothesis Q ⊢ φ, and hence Q ⊢ (φ ∨ ψ) by logic.

4. Suppose ¬(φ∨ψ) is true in N, so ¬φ and ¬ψ are true in N. Then Q ⊢ ¬φ
and Q ⊢ ¬ψ by the induction hypothesis. Consequently, Q ⊢ ¬(φ ∨ ψ)
by logic.

5. Suppose that (∀x < t) φ(x) is true in N, where t is a closed term and
k = ValN(t). By the induction hypothesis and logic, if φ(n) is true in N
for all n < ValN(t) then Q ⊢ φ(0) ∧ · · · ∧ φ(k − 1). By Lemma inp.5 it
follows that Q ⊢ (∀x < t) φ(x).

6. The case for the bounded existential quantifier, where we have a sentence
of the form (∃x < t) φ(x), is similar to that for the bounded universal
quantifier.

7. Suppose that ¬(∀x < t) φ(x) is true in N, where t is a closed term.
This sentence is equivalent to the sentence (∃x < t) ¬φ(x), with the
equivalence derivable in Q, so we may apply the reasoning for bounded
existential quantifiers.

8. Similarly, suppose that ¬(∃x < t) φ(x) is true in N, where t is a closed
term. This sentence is equivalent in Q to (∀x < t) ¬φ(x), and so we may
apply the reasoning for bounded universal quantifiers.

9. Finally, suppose ¬φ is true in N. The only cases remaining are when φ
is atomic and when ¬φ ≡ ¬¬ψ for some ∆0 sentence ψ. If φ is atomic
then by Lemma inp.4, Q ⊢ ¬φ. If ¬φ ≡ ¬¬ψ, then by logic it is provably
equivalent in Q to ψ, which is true in N since ¬φ is true in N. By the
induction hypothesis we therefore have that Q ⊢ ¬φ.

Problem inp.3. Give a detailed proof of the existential case in Lemma inp.6.

Theorem inp.7.inc:inp:s1c:

thm:sigma1-completeness

If φ is a Σ1 sentence which is true in N, then Q ⊢ φ.
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Proof. If ∃xφ(x) is a Σ1 sentence which is true in N, then there exists a natural
number n and a variable assignment s such that s(x) = n and N, s ⊨ φ(x). By
standard facts about the satisfaction relation it follows that N ⊨ φ(n). But
φ(n) is a ∆0 formula, so by Lemma inp.6 we have that Q ⊢ φ(n), and hence
by logic we also have that Q ⊢ ∃xφ(x).
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