Representing Relations

Let us say what it means for a relation to be representable.

Definition req.1. A relation \(R(x_0, \ldots, x_k) \) on the natural numbers is representable in \(\mathcal{Q} \) if there is a formula \(\varphi_R(x_0, \ldots, x_k) \) such that whenever \(R(n_0, \ldots, n_k) \) is true, \(\mathcal{Q} \) proves \(\varphi_R(n_0, \ldots, n_k) \), and whenever \(R(n_0, \ldots, n_k) \) is false, \(\mathcal{Q} \) proves \(\neg \varphi_R(n_0, \ldots, n_k) \).

Theorem req.2. A relation is representable in \(\mathcal{Q} \) if and only if it is computable.

Proof. For the forwards direction, suppose \(R(x_0, \ldots, x_k) \) is represented by the formula \(\varphi_R(x_0, \ldots, x_k) \). Here is an algorithm for computing \(R \): on input \(n_0, \ldots, n_k \), simultaneously search for a proof of \(\varphi_R(n_0, \ldots, n_k) \) and a proof of \(\neg \varphi_R(n_0, \ldots, n_k) \). By our hypothesis, the search is bound to find one or the other; if it is the first, report “yes,” and otherwise, report “no.”

In the other direction, suppose \(R(x_0, \ldots, x_k) \) is computable. By definition, this means that the function \(\chi_R(x_0, \ldots, x_k) \) is computable. By ??, \(\chi_R \) is represented by a formula, say \(\varphi_{\chi_R}(x_0, \ldots, x_k, y) \). Let \(\varphi_R(x_0, \ldots, x_k) \) be the formula \(\varphi_{\chi_R}(x_0, \ldots, x_k, \overline{1}) \). Then for any \(n_0, \ldots, n_k \), if \(R(n_0, \ldots, n_k) \) is true, then \(\chi_R(n_0, \ldots, n_k) = 1 \), in which case \(\mathcal{Q} \) proves \(\varphi_{\chi_R}(n_0, \ldots, n_k, \overline{1}) \), and so \(\mathcal{Q} \) proves \(\varphi_R(n_0, \ldots, n_k) \). On the other hand, if \(R(n_0, \ldots, n_k) \) is false, then \(\chi_R(n_0, \ldots, n_k) = 0 \). This means that \(\mathcal{Q} \) proves

\[
\forall y \ (\varphi_{\chi_R}(n_0, \ldots, n_k, y) \rightarrow y = \overline{1}).
\]

Since \(\mathcal{Q} \) proves \(\overline{0} \neq \overline{1} \), \(\mathcal{Q} \) proves \(\neg \varphi_{\chi_R}(n_0, \ldots, n_k, \overline{1}) \), and so it proves \(\neg \varphi_R(n_0, \ldots, n_k) \).

Problem req.1. Show that if \(R \) is representable in \(\mathcal{Q} \), so is \(\chi_R \).

Photo Credits

Bibliography