Representing Relations

Let us say what it means for a relation to be representable.

Definition req.1. A relation $R(x_0, \ldots, x_k)$ on the natural numbers is representable in \mathbb{Q} if there is a formula $\varphi_R(x_0, \ldots, x_k)$ such that whenever $R(n_0, \ldots, n_k)$ is true, \mathbb{Q} proves $\varphi_R(n_0, \ldots, n_k)$, and whenever $R(n_0, \ldots, n_k)$ is false, \mathbb{Q} proves $\neg\varphi_R(n_0, \ldots, n_k)$.

Theorem req.2. A relation is representable in \mathbb{Q} if and only if it is computable.

Proof. For the forwards direction, suppose $R(x_0, \ldots, x_k)$ is represented by the formula $\varphi_R(x_0, \ldots, x_k)$. Here is an algorithm for computing R: on input n_0, \ldots, n_k, simultaneously search for a proof of $\varphi_R(n_0, \ldots, n_k)$ and a proof of $\neg\varphi_R(n_0, \ldots, n_k)$. By our hypothesis, the search is bound to find one or the other; if it is the first, report “yes,” and otherwise, report “no.”

In the other direction, suppose $R(x_0, \ldots, x_k)$ is computable. By definition, this means that the function $\chi_R(x_0, \ldots, x_k)$ is computable. By ??, χ_R is represented by a formula, say $\varphi_{\chi_R}(x_0, \ldots, x_k, y)$. Let $\varphi_R(x_0, \ldots, x_k)$ be the formula $\varphi_{\chi_R}(x_0, \ldots, x_k, 1)$. Then for any n_0, \ldots, n_k, if $R(n_0, \ldots, n_k)$ is true, then $\chi_R(n_0, \ldots, n_k) = 1$, in which case \mathbb{Q} proves $\varphi_{\chi_R}(n_0, \ldots, n_k, 1)$, and so \mathbb{Q} proves $\varphi_R(n_0, \ldots, n_k)$. On the other hand, if $R(n_0, \ldots, n_k)$ is false, then $\chi_R(n_0, \ldots, n_k) = 0$. This means that \mathbb{Q} proves

$$\forall y (\varphi_{\chi_R}(n_0, \ldots, n_k, y) \to y = 1).$$

Since \mathbb{Q} proves $\bar{1} \neq 1$, \mathbb{Q} proves $\neg\varphi_{\chi_R}(n_0, \ldots, n_k, 1)$, and so it proves $\neg\varphi_R(n_0, \ldots, n_k)$.

Problem req.1. Show that if R is representable in \mathbb{Q}, so is χ_R.

Photo Credits

Bibliography