
Chapter udf

Representability in Q

req.1 Introduction

inc:req:int:
sec

We will describe a very minimal such theory called “Q” (or, sometimes,
“Robinson’s Q,” after Raphael Robinson). We will say what it means for a
function to be representable in Q, and then we will prove the following:

A function is representable in Q if and only if it is computable.

For one thing, this provides us with another model of computability. But we
will also use it to show that the set {ϕ : Q ` ϕ} is not decidable, by reducing
the halting problem to it. By the time we are done, we will have proved much
stronger things than this.

The language of Q is the language of arithmetic; Q consists of the following
axioms (to be used in conjunction with the other axioms and rules of first-order
logic with identity predicate):

∀x∀y (x′ = y′→ x = y) (Q1)

∀x 6= x′ (Q2)

∀x (x 6= →∃y x = y′) (Q3)

∀x (x+) = x (Q4)

∀x∀y (x+ y′) = (x+ y)′ (Q5)

∀x (x×) = (Q6)

∀x∀y (x× y′) = ((x× y) + x) (Q7)

∀x∀y (x < y↔∃z (z′ + x) = y) (Q8)

For each natural number n, define the numeral n to be the term 0′′...′ where
there are n tick marks in all. So, 0 is the constant symbol by itself, 1 is ′, 2
is ′′, etc.

As a theory of arithmetic, Q is extremely weak; for example, you can’t even
prove very simple facts like ∀xx 6= x′ or ∀x ∀y (x + y) = (y + x). But we will
see that much of the reason that Q is so interesting is because it is so weak.

1

In fact, it is just barely strong enough for the incompleteness theorem to hold.
Another reason Q is interesting is because it has a finite set of axioms.

A stronger theory than Q (called Peano arithmetic PA) is obtained by
adding a schema of induction to Q:

(ϕ() ∧ ∀x (ϕ(x)→ ϕ(x′)))→∀xϕ(x)

where ϕ(x) is any formula. If ϕ(x) contains free variables other than x, we add
universal quantifiers to the front to bind all of them (so that the corresponding
instance of the induction schema is a sentence). For instance, if ϕ(x, y) also
contains the variable y free, the corresponding instance is

∀y ((ϕ() ∧ ∀x (ϕ(x)→ ϕ(x′)))→∀xϕ(x))

Using instances of the induction schema, one can prove much more from the
axioms of PA than from those of Q. In fact, it takes a good deal of work to
find “natural” statements about the natural numbers that can’t be proved in
Peano arithmetic!

Definition req.1. inc:req:int:

defn:representable-fn

A function f(x0, . . . , xk) from the natural numbers to
the natural numbers is said to be representable in Q if there is a formula
ϕf (x0, . . . , xk, y) such that whenever f(n0, . . . , nk) = m, Q proves

1. ϕf (n0, . . . , nk,m)

2. ∀y (ϕf (n0, . . . , nk, y)→m = y).

There are other ways of stating the definition; for example, we could equiv-
alently require that Q proves ∀y (ϕf (n0, . . . , nk, y)↔ y = m).

Theorem req.2. inc:req:int:

thm:representable-iff-comp

A function is representable in Q if and only if it is com-
putable.

There are two directions to proving the theorem. The left-to-right direc-
tion is fairly straightforward once arithmetization of syntax is in place. The
other direction requires more work. Here is the basic idea: we pick “general
recursive” as a way of making “computable” precise, and show that every gen-
eral recursive function is representable in Q. Recall that a function is general
recursive if it can be defined from zero, the successor function succ, and the
projection functions Pni , using composition, primitive recursion, and regular
minimization. So one way of showing that every general recursive function is
representable in Q is to show that the basic functions are representable, and
whenever some functions are representable, then so are the functions defined
from them using composition, primitive recursion, and regular minimization.
In other words, we might show that the basic functions are representable, and
that the representable functions are “closed under” composition, primitive re-
cursion, and regular minimization. This guarantees that every general recursive
function is representable.

2 representability-in-q rev: 445393f (2018-08-14) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

It turns out that the step where we would show that representable func-
tions are closed under primitive recursion is hard. In order to avoid this step,
we show first that in fact we can do without primitive recursion. That is, we
show that every general recursive function can be defined from basic functions
using composition and regular minimization alone. To do this, we show that
primitive recursion can actually be done by a specific regular minimization.
However, for this to work, we have to add some additional basic functions:
addition, multiplication, and the characteristic function of the identity rela-
tion χ=. Then, we can prove the theorem by showing that all of these basic
functions are representable in Q, and the representable functions are closed
under composition and regular minimization.

req.2 Functions Representable in Q are Computable

inc:req:rpc:
sec

Lemma req.3. Every function that is representable in Q is computable.

Proof. Let’s first give the intuitive idea for why this is true. If f(x0, . . . , xk) is
representable in Q, there is a formula ϕ(x0, . . . , xk, y) such that

Q ` ϕf (n0, . . . , nk,m) iff m = f(n0, . . . , nk).

To compute f , we do the following. List all the possible derivations δ in the
language of arithmetic. This is possible to do mechanically. For each one,
check if it is a derivation of a formula of the form ϕf (n0, . . . , nk,m). If it is, m
must be = f(n0, . . . , nk) and we’ve found the value of f . The search terminates
because Q ` ϕf (n0, . . . , nk, f(n0, . . . , nk)), so eventually we find a δ of the right
sort.

This is not quite precise because our procedure operates on derivations
and formulas instead of just on numbers, and we haven’t explained exactly
why “listing all possible derivations” is mechanically possible. But as we’ve
seen, it is possible to code terms, formulas, and derivations by Gödel numbers.
We’ve also introduced a precise model of computation, the general recursive
functions. And we’ve seen that the relation PrfQ(d, y), which holds iff d is the
Gödel number of a derivation of the formula with Gödel number x from the
axioms of Q, is (primitive) recursive. Other primitive recursive functions we’ll
need are num (??) and Subst (??). From these, it is possible to define f by
minimization; thus, f is recursive.

First, define

A(n0, . . . , nk,m) =

Subst(Subst(. . . Subst(#ϕf
#,num(n0), #x0

#),

. . .),num(nk), #xk
#),num(m), #y#)

This looks complicated, but it’s just the functionA(n0, . . . , nk,m) = #ϕf (n0, . . . , nk,m)#.

representability-in-q rev: 445393f (2018-08-14) by OLP / CC–BY 3

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Now, consider the relation R(n0, . . . , nk, s) which holds if (s)0 is the Gödel
number of a derivation from Q of ϕf (n0, . . . , nk, (s)1):

R(n0, . . . , nk, s) iff PrfQ((s)0, A(n0, . . . , nk, (s)1)

If we can find an s such that R(n0, . . . , nk, s) hold, we have found a pair of
numbers—(s)0 and (s1)—such that (s)0 is the Gödel number of a derivation
of Af (n0, . . . , nk, (s)1). So looking for s is like looking for the pair d and m
in the informal proof. And a computable function that “looks for” such an
s can be defined by regular minimization. Note that R is regular: for every
n0, . . . , nk, there is a derivation δ of Q ` ϕf (n0, . . . , nk, f(n0, . . . , nk)), so
R(n0, . . . , nk, s) holds for s = 〈 #δ#, f(n0, . . . , nk)〉. So, we can write f as

f(n0, . . . , nk) = (µs R(n0, . . . , nk, s))1.

req.3 The Beta Function Lemma

inc:req:bet:
sec

In order to show that we can carry out primitive recursion if addition,
multiplication, and χ= are available, we need to develop functions that han-
dle sequences. (If we had exponentiation as well, our task would be easier.)
When we had primitive recursion, we could define things like the “n-th prime,”
and pick a fairly straightforward coding. But here we do not have primitive
recursion—in fact we want to show that we can do primitive recursion using
minimization—so we need to be more clever.

Lemma req.4. inc:req:bet:

lem:beta

There is a function β(d, i) such that for every sequence a0,
. . . , an there is a number d, such that for every i ≤ n, β(d, i) = ai. Moreover,
β can be defined from the basic functions using just composition and regular
minimization.

Think of d as coding the sequence 〈a0, . . . , an〉, and β(d, i) returning the i-
th element. (Note that this “coding” does not use the prower-of-primes coding
we’re already familiar with!). The lemma is fairly minimal; it doesn’t say we can
concatenate sequences or append elements, or even that we can compute d from
a0, . . . , an using functions definable by composition and regular minimization.
All it says is that there is a “decoding” function such that every sequence is
“coded.”

The use of the notation β is Gödel’s. To repeat, the hard part of proving
the lemma is defining a suitable β using the seemingly restricted resources,
i.e., using just composition and minimization—however, we’re allowed to use
addition, multiplication, and χ=. There are various ways to prove this lemma,
but one of the cleanest is still Gödel’s original method, which used a number-
theoretic fact called the Chinese Remainder theorem.

Definition req.5. Two natural numbers a and b are relatively prime if their
greatest common divisor is 1; in other words, they have no other divisors in
common.

4 representability-in-q rev: 445393f (2018-08-14) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Definition req.6. a ≡ b mod c means c | (a− b), i.e., a and b have the same
remainder when divided by c.

Here is the Chinese Remainder theorem:

Theorem req.7. Suppose x0, . . . , xn are (pairwise) relatively prime. Let y0,
. . . , yn be any numbers. Then there is a number z such that

z ≡ y0 mod x0

z ≡ y1 mod x1

...

z ≡ yn mod xn.

Here is how we will use the Chinese Remainder theorem: if x0, . . . , xn are
bigger than y0, . . . , yn respectively, then we can take z to code the sequence
〈y0, . . . , yn〉. To recover yi, we need only divide z by xi and take the remainder.
To use this coding, we will need to find suitable values for x0, . . . , xn.

A couple of observations will help us in this regard. Given y0, . . . , yn, let

j = max(n, y0, . . . , yn) + 1,

and let

x0 = 1 + j!

x1 = 1 + 2 · j!
x2 = 1 + 3 · j!
...

xn = 1 + (n+ 1) · j!

Then two things are true:

1. x0, . . . , xn are relatively prime.

2. For each i, yi < xi.

To see that (1) is true, note that if p is a prime number and p | xi and p | xk,
then p | 1 + (i+ 1)j! and p | 1 + (k + 1)j!. But then p divides their difference,

(1 + (i+ 1)j!)− (1 + (k + 1)j!) = (i− k)j!.

Since p divides 1+(i+1)j!, it can’t divide j! as well (otherwise, the first division
would leave a remainder of 1). So p divides i− k, since p divides (i− k)j!. But
|i− k| is at most n, and we have chosen j > n, so this implies that p | j!, again
a contradiction. So there is no prime number dividing both xi and xk. Clause
(2) is easy: we have yi < j < j! < xi.

Now let us prove the β function lemma. Remember that we can use 0,
successor, plus, times, χ=, projections, and any function defined from them

representability-in-q rev: 445393f (2018-08-14) by OLP / CC–BY 5

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

using composition and minimization applied to regular functions. We can also
use a relation if its characteristic function is so definable. As before we can
show that these relations are closed under boolean combinations and bounded
quantification; for example:

1. not(x) = χ=(x, 0)

2. (min x ≤ z)R(x, y) = µx (R(x, y) ∨ x = z)

3. (∃x ≤ z) R(x, y)⇔ R((min x ≤ z)R(x, y), y)

We can then show that all of the following are also definable without primitive
recursion:

1. The pairing function, J(x, y) = 1
2 [(x+ y)(x+ y + 1)] + x

2. Projections

K(z) = (min x ≤ q) (∃y ≤ z [z = J(x, y)])

and
L(z) = (min y ≤ q) (∃x ≤ z [z = J(x, y)]).

3. x < y

4. x | y

5. The function rem(x, y) which returns the remainder when y is divided
by x

Now define
β∗(d0, d1, i) = rem(1 + (i+ 1)d1, d0)

and
β(d, i) = β∗(K(d), L(d), i).

This is the function we need. Given a0, . . . , an, as above, let

j = max(n, a0, . . . , an) + 1,

and let d1 = j!. By the observations above, we know that 1+d1, 1+2d1, . . . , 1+
(n+1)d1 are relatively prime and all are bigger than a0, . . . , an. By the Chinese
Remainder theorem there is a value d0 such that for each i,

d0 ≡ ai mod (1 + (i+ 1)d1)

and so (because d1 is greater than ai),

ai = rem(1 + (i+ 1)d1, d0).

Let d = J(d0, d1). Then for each i ≤ n, we have

β(d, i) = β∗(d0, d1, i)

= rem(1 + (i+ 1)d1, d0)

= ai

which is what we need. This completes the proof of the β-function lemma.

6 representability-in-q rev: 445393f (2018-08-14) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

req.4 Simulating Primitive Recursion

inc:req:pri:
sec

Now we can show that definition by primitive recursion can be “simulated”
by regular minimization using the beta function. Suppose we have f(~z) and
g(u, v, ~z). Then the function h(x, ~z) defined from f and g by primitive recursion
is

h(0, ~z) = f(~z)

h(x+ 1, ~z) = g(x, h(x, ~z), ~z).

We need to show that h can be defined from f and g using just composition
and regular minimization, using the basic functions and functions defined from
them using composition and regular minimization (such as β).

Lemma req.8.inc:req:pri:

lem:prim-rec

If h can be defined from f and g using primitive recursion,
it can be defined from f , g, the functions zero, succ, Pni , add, mult, χ=, using
composition and regular minimization.

Proof. First, define an auxiliary function ĥ(x, ~z) which returns the least num-
ber d such that d codes a sequence which satisfies

1. (d)0 = f(~z), and

2. for each i < x, (d)i+1 = g(i, (d)i, ~z),

where now (d)i is short for β(d, i). In other words, ĥ returns the sequence

〈h(0, ~z), h(1, ~z), . . . , h(x, ~z)〉. We can write ĥ as

ĥ(x, z) = µd (β(d, 0) = f(~z) ∧ ∀i < xβ(d, i+ 1) = g(i, β(d, i), ~z)).

Note: no primitive recursion is needed here, just minimization. The function
we minimize is regular because of the beta function lemma Lemma req.4.

But now we have
h(x, ~z) = β(ĥ(x, ~z), x),

so h can be defined from the basic functions using just composition and regular
minimization.

req.5 Basic Functions are Representable in Q

inc:req:bre:
sec

First we have to show that all the basic functions are representable in Q.
In the end, we need to show how to assign to each k-ary basic function
f(x0, . . . , xk−1) a formula ϕf (x0, . . . , xk−1, y) that represents it.

We will be able to represent zero, successor, plus, times, the characteristic
function for equality, and projections. In each case, the appropriate represent-
ing function is entirely straightforward; for example, zero is represented by the
formula y = , successor is represented by the formula x′0 = y, and addition
is represented by the formula (x0 + x1) = y. The work involves showing that

representability-in-q rev: 445393f (2018-08-14) by OLP / CC–BY 7

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Q can prove the relevant sentences; for example, saying that addition is rep-
resented by the formula above involves showing that for every pair of natural
numbers m and n, Q proves

n+m = n+m and

∀y ((n+m) = y→ y = n+m).

Proposition req.9. inc:req:bre:
prop:rep-zero

The zero function zero(x) = 0 is represented in Q by
y = .

Proposition req.10. inc:req:bre:
prop:rep-succ

The successor function succ(x) = x + 1 is represented
in Q by y = x′.

Proposition req.11. inc:req:bre:

prop:rep-proj

The projection function Pni (x0, . . . , xn−1) = xi is rep-
resented in Q by y = xi.

Problem req.1. Prove that y = , y = x′, and y = xi represent zero, succ,
and Pni , respectively.

Proposition req.12. inc:req:bre:

prop:rep-id

The characteristic function of =,

χ=(x0, x1) =

{
1 if x0 = x1

0 otherwise

is represented in Q by

(x0 = x1 ∧ y = 1) ∨ (x0 6= x1 ∧ y = 0).

The proof requires the following lemma.

Lemma req.13. inc:req:bre:

lem:q-proves-neq

Given natural numbers n and m, if n 6= m, then Q ` n 6= m.

Proof. Use induction on n to show that for every m, if n 6= m, then Q ` n 6= m.
In the base case, n = 0. If m is not equal to 0, then m = k + 1 for some

natural number k. We have an axiom that says ∀x 0 6= x′. By a quantifier

axiom, replacing x by k, we can conclude 0 6= k
′
. But k

′
is just m.

In the induction step, we can assume the claim is true for n, and consider
n+ 1. Let m be any natural number. There are two possibilities: either m = 0
or for some k we have m = k + 1. The first case is handled as above. In the
second case, suppose n+ 1 6= k + 1. Then n 6= k. By the induction hypothesis
for n we have Q ` n 6= k. We have an axiom that says ∀x∀y x′ = y′→ x = y.

Using a quantifier axiom, we have n′ = k
′→ n = k. Using propositional logic,

we can conclude, in Q, n 6= k→n′ 6= k
′
. Using modus ponens, we can conclude

n′ 6= k
′
, which is what we want, since k

′
is m.

explanation Note that the lemma does not say much: in essence it says that Q can
prove that different numerals denote different objects. For example, Q proves
0′′ 6= 0′′′. But showing that this holds in general requires some care. Note also
that although we are using induction, it is induction outside of Q.

8 representability-in-q rev: 445393f (2018-08-14) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proof of Proposition req.12. If n = m, then n and m are the same term, and
χ=(n,m) = 1. But Q ` (n = m ∧ 1 = 1), so it proves ϕ=(n,m, 1). If n 6= m,
then χ=(n,m) = 0. By Lemma req.13, Q ` n 6= m and so also (n 6= m∧ =).
Thus Q ` ϕ=(n,m, 0).

For the second part, we also have two cases. If n = m, we have to show that
that Q ` ∀(ϕ=(n,m, y)→ y = 1). Arguing informally, suppose ϕ=(n,m, y),
i.e.,

(n = n ∧ y = 1) ∨ (n 6= n ∧ y = 0)

The left disjunct implies y = 1 by logic; the right contradicts n = n which is
provable by logic.

Suppose, on the other hand, that n 6= m. Then ϕ=(n,m, y) is

(n = m ∧ y = 1) ∨ (n 6= m ∧ y = 0)

Here, the left disjunct contradicts n 6= m, which is provable in Q by Lemma req.13;
the right disjunct entails y = 0.

Proposition req.14.inc:req:bre:

prop:rep-add

The addition function add(x0, x1) = x0 + x1 is is rep-
resented in Q by

y = (x0 + x1).

Lemma req.15.inc:req:bre:

lem:q-proves-add

Q ` (n+m) = n+m

Proof. We prove this by induction on m. If m = 0, the claim is that Q `
(n +) = n. This follows by axiom Q4. Now suppose the claim for m; let’s
prove the claim for m + 1, i.e., prove that Q ` (n + m+ 1) = n+m+ 1.
Note that m+ 1 is just m′, and n+m+ 1 is just n+m

′
. By axiom Q5,

Q ` (n+m′) = (n+m)′. By induction hypothesis, Q ` (n+m) = n+m. So
Q ` (n+m′) = n+m

′
.

Proof of Proposition req.14. The formula ϕadd(x0, x1, y) representing add is
y = (x0 + x1). First we show that if add(n,m) = k, then Q ` ϕadd(n,m, k),
i.e., Q ` k = (n+m). But since k = n+m, k just is n+m, and we’ve shown
in Lemma req.15 that Q ` (n+m) = n+m.

We also have to show that if add(n,m) = k, then

Q ` ∀y (ϕadd(n,m, y)→ y = k).

Suppose we have n+m = y. Since

Q ` (n+m) = n+m,

we can replace the left side with n+m and get n+m = y, for arbitrary y.

Proposition req.16.inc:req:bre:

prop:rep-mult

The multiplication function mult(x0, x1) = x0 · x1 is
represented in Q by

y = (x0 × x1).

Proof. Exercise.

representability-in-q rev: 445393f (2018-08-14) by OLP / CC–BY 9

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Lemma req.17. inc:req:bre:

lem:q-proves-mult

Q ` (n×m) = n ·m

Proof. Exercise.

Problem req.2. Prove Lemma req.17.

Problem req.3. Use Lemma req.17 to prove Proposition req.16.

req.6 Composition is Representable in Q

inc:req:cmp:
sec

Suppose h is defined by

h(x0, . . . , xl−1) = f(g0(x0, . . . , xl−1), . . . , gk−1(x0, . . . , xl−1)).

where we have already found formulas ϕf , ϕg0 , . . . , ϕgk−1
representing the func-

tions f , and g0, . . . , gk−1, respectively. We have to find a formula ϕh repre-
senting h.

Let’s start with a simple case, where all functions are 1-place, i.e., consider
h(x) = f(g(x)). If ϕf (y, z) represents f , and ϕg(x, y) represents g, we need
a formula ϕh(x, z) that represents h. Note that h(x) = z iff there is a y such
that both z = f(y) and y = g(x). (If h(x) = z, then g(x) is such a y; if such a
y exists, then since y = g(x) and z = f(y), z = f(g(x)).) This suggests that
∃y (ϕg(x, y)∧ϕf (y, z)) is a good candidate for ϕh(x, z). We just have to verify
that Q proves the relevant formulas.

Proposition req.18. inc:req:cmp:

prop:rep1

If h(n) = m, then Q ` ϕh(n,m).

Proof. Suppose h(n) = m, i.e., f(g(n)) = m. Let k = g(n). Then

Q ` ϕg(n, k)

since ϕg represents g, and

Q ` ϕf (k,m)

since ϕf represents f . Thus,

Q ` ϕg(n, k) ∧ ϕf (k,m)

and consequently also

Q ` ∃y (ϕg(n, y) ∧ ϕf (y,m)),

i.e., Q ` ϕh(n,m).

Proposition req.19. inc:req:cmp:

prop:rep2

If h(n) = m, then Q ` ∀z (ϕh(n, z)→ z = m).

10 representability-in-q rev: 445393f (2018-08-14) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proof. Suppose h(n) = m, i.e., f(g(n)) = m. Let k = g(n). Then

Q ` ∀y (ϕg(n, y)→ y = k)

since ϕg represents g, and

Q ` ∀z (ϕf (k, z)→ z = m)

since ϕf represents f . Using just a little bit of logic, we can show that also

Q ` ∀z (∃y (ϕg(n, y) ∧ ϕf (y, z))→ z = m).

i.e., Q ` ∀y (ϕh(n, y)→ y = m).

The same idea works in the more complex case where f and gi have arity
greater than 1.

Proposition req.20.inc:req:cmp:

prop:rep-composition

If ϕf (y0, . . . , yk−1, z) represents f(y0, . . . , yk−1) in Q,
and ϕgi(x0, . . . , xl−1, y) represents gi(x0, . . . , xl−1) in Q, then

∃y0, . . . ∃yk−1 (ϕg0(x0, . . . , xl−1, y0) ∧ · · · ∧
ϕgk−1

(x0, . . . , xl−1, yk−1) ∧ ϕf (y0, . . . , yk−1, z))

represents

h(x0, . . . , xk−1) = f(g0(x0, . . . , xk−1), . . . , g0(x0, . . . , xk−1)).

Proof. Exercise.

Problem req.4. Using the proofs of Proposition req.19 and Proposition req.19
as a guide, carry out the proof of Proposition req.20 in detail.

req.7 Regular Minimization is Representable in Q

inc:req:min:
sec

Let’s consider unbounded search. Suppose g(x, z) is regular and repre-
sentable in Q, say by the formula ϕg(x, z, y). Let f be defined by f(z) =
µx [g(x, z) = 0]. We would like to find a formula ϕf (z, y) representing f . The
value of f(z) is that number x which (a) satisfies g(x, z) = 0 and (b) is the
least such, i.e., for any w < x, g(w, z) 6= 0. So the following is a natural choice:

ϕf (z, y) ≡ ϕg(y, z, 0) ∧ ∀w (w < y→¬ϕg(w, z, 0)).

In the general case, of course, we would have to replace z with z0, . . . , zk.
The proof, again, will involve some lemmas about things Q is strong enough

to prove.

Lemma req.21.inc:req:min:

lem:succ

For every variable x and every natural number n,

Q ` (x′ + n) = (x+ n)′.

representability-in-q rev: 445393f (2018-08-14) by OLP / CC–BY 11

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proof. The proof is, as usual, by induction on n. In the base case, n = 0, we
need to show that Q proves (x′ + 0) = (x+ 0)′. But we have:

Q ` (x′ + 0) = x′ by axiom Q4 inc:req:min:

step1

(req.1)

Q ` (x+ 0) = x by axiom Q4 inc:req:min:

step2

(req.2)

Q ` (x+ 0)′ = x′ by eq. (req.2) inc:req:min:

step3

(req.3)

Q ` (x′ + 0) = (x+ 0)′ by eq. (req.1) and eq. (req.3)

In the induction step, we can assume that we have shown that Q ` (x′ + n) =
(x+n)′. Since n+ 1 is n′, we need to show that Q proves (x′+n′) = (x+n′)′.
We have:

Q ` (x′ + n′) = (x′ + n)′ by axiom Q5 inc:req:min:

step5

(req.4)

Q ` (x′ + n′) = (x+ n′)′ inductive hypothesis inc:req:min:

step6

(req.5)

Q ` (x′ + n)′ = (x+ n′)′ by eq. (req.4) and eq. (req.5).

It is again worth mentioning that this is weaker than saying that Q proves
∀x∀y (x′+y) = (x+y)′. Although this sentence is true in N, Q does not prove
it.

Lemma req.22. inc:req:min:

lem:less

1. Q ` ∀x¬x < .

2. For every natural number n,

Q ` ∀x (x < n+ 1→ (x = ∨ · · · ∨ x = n)).

Proof. Let us do 1 and part of 2, informally (i.e., only giving hints as to how
to construct the formal derivation).

For part 1, by the definition of <, we need to prove ¬∃y (y′ + x) =
in Q, which is equivalent (using the axioms and rules of first-order logic) to
∀y (y′ + x) 6= 0. Here is the idea: suppose (y′ + x) = . If x = , we have
(y′ +) = . But by axiom Q4 of Q, we have (y′ +) = y′, and by axiom Q2

we have y′ 6= , a contradiction. So ∀y (y′ + x) 6= . If x 6= , by axiom Q3,
there is a z such that x = z′. But then we have (y′ + z′) = 0. By axiom Q5,
we have (y′ + z)′ = , again contradicting axiom Q2.

For part 2, use induction on n. Let us consider the base case, when n = 0.
In that case, we need to show x < 1→ x = . Suppose x < 1. Then by the
defining axiom for <, we have ∃y (y′ + x) = ′. Suppose y has that property;
so we have y′ + x = ′.

We need to show x = . By axiom Q3, if x 6= , we get x = z′ for some z.
Then we have (y′ + z′) = ′. By axiom Q5 of Q, we have (y′ + z)′ = ′.
By axiom Q1, we have (y′ + z) = . But this means, by definition, z < ,
contradicting part 1.

12 representability-in-q rev: 445393f (2018-08-14) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Lemma req.23.inc:req:min:

lem:trichotomy

For every m ∈ N,

Q ` ∀y ((y < m ∨m < y) ∨ y = m).

Proof. By induction on m. First, consider the case m = 0. Q ` ∀y (y 6=
→∃z y = z′) by Q3. But if y = z′, then (z′ +) = (y +) by the logic of =.
By Q4, (y +) = y, so we have (z′ +) = y, and hence ∃z (z′ +) = y. By
the definition of < in Q8, < y. If < y, then also < y ∨ y < . We obtain:
y 6= → (< y ∨ y <), which is equivalent to (< y ∨ y <) ∨ y = .

Now suppose we have

Q ` ∀y ((y < m ∨m < y) ∨ y = m)

and we want to show

Q ` ∀y ((y < m+ 1 ∨m+ 1 < y) ∨ y = m+ 1)

The first disjunct y < m is equivalent (byQ8) to ∃z (z′+y) = m. If (z′+y) = m,
then also (z′ + y)′ = m′. By Q4, (z′ + y)′ = (z′′ + y). Hence, (z′′ + y) = m′.
We get ∃u (u′ + y) = m+ 1 by existentially generalizing on z′ and keeping in
mind that m′ is m+ 1. Hence, if y < m then y < m+ 1.

Now suppose m < y, i.e., ∃z (z′ +m) = y. By Q3 and some logic, we have
z = ∨∃u z = u′. If z = , we have (′+m) = y. Since Q ` (′+m) = m+ 1,
we have y = m+ 1. Now suppose ∃u z = u′. Then:

y = (z′ +m) by assumption

(z′ +m) = (u′′ +m) from z = u′

(u′′ +m) = (u′ +m)′ by Lemma req.21

(u′ +m)′ = (u′ +m′) by Q5, so

y = (u′ +m+ 1)

By existential generalization, ∃u (u′+m+ 1) = y, i.e., m+ 1 < y. So, if m < y,
then m+ 1 < y ∨ y = m+ 1.

Finally, assume y = m. Then, since Q ` (′+m) = m+ 1, (′+y) = m+ 1.
From this we get ∃z (z′ + y) = m+ 1, or y < m+ 1.

Hence, from each disjunct of the case for m, we can obtain the case for m+
1.

Proposition req.24.inc:req:min:

prop:rep-minimization

If ϕg(x, z, y) represents g(x, y) in Q, then

ϕf (z, y) ≡ ϕg(y, z,) ∧ ∀w (w < y→¬ϕg(w, z,)).

represents f(z) = µx [g(x, z) = 0].

Proof. First we show that if f(n) = m, then Q ` ϕf (n,m), i.e.,

Q ` ϕg(m,n,) ∧ ∀w (w < m→¬ϕg(w, n,)).

representability-in-q rev: 445393f (2018-08-14) by OLP / CC–BY 13

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Since ϕg(x, z, y) represents g(x, z) and g(m,n) = 0 if f(n) = m, we have

Q ` ϕg(m,n,).

If f(n) = m, then for every k < m, g(k, n) 6= 0. So

Q ` ¬ϕg(k, n,).

We get that

Q ` ∀w (w < m→¬ϕg(w, n,)). inc:req:min:

rep-less

(req.6)

by Lemma req.22 (by (1) in case m = 0 and by (2) otherwise).
Now let’s show that if f(n) = m, then Q ` ∀y (ϕf (n, y)→ y = m). We

again sketch the argument informally, leaving the formalization to the reader.
Suppose ϕf (n, y). From this we get (a) ϕg(y, n,) and (b) ∀w (w < y →

¬ϕg(w, n,)). By Lemma req.23, (y < m ∨m < y) ∨ y = m. We’ll show that
both y < m and m < y leads to a contradiction.

If m < y, then ¬ϕg(m,n,) from (b). But m = f(n), so g(m,n) = 0, and
so Q ` ϕg(m,n,) since ϕg represents g. So we have a contradiction.

Now suppose y < m. Then since Q ` ∀w (w < m → ¬ϕg(w, n,)) by
eq. (req.6), we get ¬ϕg(y, n,). This again contradicts (a).

req.8 Computable Functions are Representable in Q

inc:req:crq:
sec

Theorem req.25. Every computable function is representable in Q.

Proof. For definiteness, and using the Church-Turing Thesis, let’s say that a
function is computable iff it is general recursive. The general recursive func-
tions are those which can be defined from the zero function zero, the successor
function succ, and the projection function Pni using composition, primitive re-
cursion, and regular minimization. By Lemma req.8, any function h that can
be defined from f and g can also be defined using composition and regular
minimization from f , g, and zero, succ, Pni , add, mult, χ=. Consequently, a
function is general recursive iff it can be defined from zero, succ, Pni , add, mult,
χ= using composition and regular minimization.

We’ve furthermore shown that the basic functions in question are repre-
sentable in Q (Propositions req.9 to req.12, req.14 and req.16), and that any
function defined from representable functions by composition or regular min-
imization (Proposition req.20, Proposition req.24) is also representable. Thus
every general recursive function is representable in Q.

explanation We have shown that the set of computable functions can be characterized
as the set of functions representable in Q. In fact, the proof is more general.

14 representability-in-q rev: 445393f (2018-08-14) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

From the definition of representability, it is not hard to see that any theory
extending Q (or in which one can interpret Q) can represent the computable
functions. But, conversely, in any proof system in which the notion of proof
is computable, every representable function is computable. So, for example,
the set of computable functions can be characterized as the set of functions
representable in Peano arithmetic, or even Zermelo-Fraenkel set theory. As
Gödel noted, this is somewhat surprising. We will see that when it comes to
provability, questions are very sensitive to which theory you consider; roughly,
the stronger the axioms, the more you can prove. But across a wide range
of axiomatic theories, the representable functions are exactly the computable
ones; stronger theories do not represent more functions as long as they are
axiomatizable.

req.9 Representing Relations

inc:req:rel:
sec

Let us say what it means for a relation to be representable.

Definition req.26.inc:req:rel:

defn:representing-relations

A relation R(x0, . . . , xk) on the natural numbers is repre-
sentable in Q if there is a formula ϕR(x0, . . . , xk) such that wheneverR(n0, . . . , nk)
is true, Q proves ϕR(n0, . . . , nk), and whenever R(n0, . . . , nk) is false, Q proves
¬ϕR(n0, . . . , nk).

Theorem req.27.inc:req:rel:

thm:representing-rels

A relation is representable in Q if and only if it is com-
putable.

Proof. For the forwards direction, suppose R(x0, . . . , xk) is represented by the
formula ϕR(x0, . . . , xk). Here is an algorithm for computing R: on input n0,
. . . , nk, simultaneously search for a proof of ϕR(n0, . . . , nk) and a proof of
¬ϕR(n0, . . . , nk). By our hypothesis, the search is bound to find one or the
other; if it is the first, report “yes,” and otherwise, report “no.”

In the other direction, suppose R(x0, . . . , xk) is computable. By definition,
this means that the function χR(x0, . . . , xk) is computable. By Theorem req.2,
χR is represented by a formula, say ϕχR

(x0, . . . , xk, y). Let ϕR(x0, . . . , xk) be
the formula ϕχR

(x0, . . . , xk, 1). Then for any n0, . . . , nk, if R(n0, . . . , nk) is
true, then χR(n0, . . . , nk) = 1, in which case Q proves ϕχR

(n0, . . . , nk, 1), and
so Q proves ϕR(n0, . . . , nk). On the other hand, if R(n0, . . . , nk) is false, then
χR(n0, . . . , nk) = 0. This means that Q proves

∀y (ϕχR
(n0, . . . , nk, y)→ y = 0).

Since Q proves 0 6= 1, Q proves ¬ϕχR
(n0, . . . , nk, 1), and so it proves ¬ϕR(n0, . . . , nk).

Problem req.5. Show that if R is representable in Q, so is χR.

representability-in-q rev: 445393f (2018-08-14) by OLP / CC–BY 15

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

req.10 Undecidability

inc:req:und:
sec

We call a theory T undecidable if there is no computational procedure
which, after finitely many steps and unfailingly, provides a correct answer to
the question “does T prove ϕ?” for any sentence ϕ in the language of T. So
Q would be decidable iff there were a computational procedure which decides,
given a sentence ϕ in the language of arithmetic, whether Q ` ϕ or not. We
can make this more precise by asking: Is the relation ProvQ(y), which holds
of y iff y is the Gödel number of a sentence provable in Q, recursive? The
answer is: no.

Theorem req.28. Q is undecidable, i.e., the relation

ProvQ(y)⇔ Sent(y) ∧ ∃xPrfQ(x, y)

is not recursive.

Proof. Suppose it were. Then we could solve the halting problem as follows:
Given e and n, we know that ϕe(n) ↓ iff there is an s such that T (e, n, s), where
T is Kleene’s predicate from ??. Since T is primitive recursive it is representable
in Q by a formula ψT , that is, Q ` ψT (e, n, s) iff T (e, n, s). If Q ` ψT (e, n, s)
then also Q ` ∃y ψT (e, n, y). If no such s exists, then Q ` ¬ψT (e, n, s) for
every s. But Q is ω-consistent, i.e., if Q ` ¬ϕ(n) for every n ∈ N, then
Q 0 ∃y ϕ(y). We know this because the axioms of Q are true in the standard
model N. So, Q 0 ∃y ψT (e, n, y). In other words, Q ` ∃y ψT (e, n, y) iff there
is an s such that T (e, n, s), i.e., iff ϕe(n) ↓. From e and n we can compute

#∃y ψT (e, n, y)#, let g(e, n) be the primitive recursive function which does that.
So

h(e, n) =

{
1 if ProvQ(g(e, n))

0 otherwise.

This would show that h is recursive if ProvQ is. But h is not recursive, by ??,
so ProvQ cannot be either.

Corollary req.29. First-order logic is undecidable.

Proof. If first-order logic were decidable, provability in Q would be as well,
since Q ` ϕ iff ` ω→ ϕ, where ω is the conjunction of the axioms of Q.

Photo Credits

16

Bibliography

17

	Representability in Q
	Introduction
	Functions Representable in Q are Computable
	The Beta Function Lemma
	Simulating Primitive Recursion
	Basic Functions are Representable in Q
	Composition is Representable in Q
	Regular Minimization is Representable in Q
	Computable Functions are Representable in Q
	Representing Relations
	Undecidability

	Photo Credits
	Bibliography

