Let's consider unbounded search. Suppose \(g(x, z) \) is regular and representable in \(Q \), say by the formula \(\varphi_g(x, z, y) \). We would like to find a formula \(\varphi_f(z, y) \) representing \(f \). The value of \(f(z) \) is that number \(x \) which (a) satisfies \(g(x, z) = 0 \) and (b) is the least such, i.e., for any \(w < x \), \(g(w, z) \neq 0 \). So the following is a natural choice:

\[
\varphi_f(z, y) \equiv \varphi_g(y, z, 0) \land \forall w (w < y \rightarrow \neg \varphi_g(w, z, 0)).
\]

In the general case, of course, we would have to replace \(z \) with \(z_0, \ldots, z_k \).

Lemma req.1. For every constant symbol \(a \) and every natural number \(n \),

\[
Q \vdash (a' + \pi) = (a + \pi)'.
\]

Proof. The proof is, as usual, by induction on \(n \). In the base case, \(n = 0 \), we need to show that \(Q \) proves \((a' + \pi) = (a + \pi)' \). But we have:

\[
\begin{align*}
Q & \vdash (a' + \pi) = a' \quad \text{by axiom } Q_4 \quad (1) \\
Q & \vdash (a + \pi) = a \quad \text{by axiom } Q_4 \quad (2) \\
Q & \vdash (a + \pi)' = a' \quad \text{by eq. (2)} \quad (3) \\
Q & \vdash (a' + \pi) = (a + \pi)' \quad \text{by eq. (1) and eq. (3)} \quad (4)
\end{align*}
\]

In the induction step, we can assume that we have shown that \(Q \vdash (a' + \pi) = (a + \pi)' \). Since \(n + 1 \) is \(\pi' \), we need to show that \(Q \) proves \((a' + \pi') = (a + \pi')' \). We have:

\[
\begin{align*}
Q & \vdash (a' + \pi') = (a' + \pi)' \quad \text{by axiom } Q_5 \quad (4) \\
Q & \vdash (a' + \pi') = (a + \pi')' \quad \text{inductive hypothesis} \quad (5) \\
Q & \vdash (a' + \pi)' = (a + \pi')' \quad \text{by eq. (4) and eq. (5)}. \quad \square
\end{align*}
\]

It is again worth mentioning that this is weaker than saying that \(Q \) proves \(\forall x \forall y (x' + y) = (x + y)' \). Although this sentence is true in \(\mathfrak{N} \), \(Q \) does not prove it.

Lemma req.2. \(Q \vdash \forall x \neg x < 0 \).

Proof. We give the proof informally (i.e., only giving hints as to how to construct the formal derivation).

We have to prove \(\neg a < 0 \) for an arbitrary \(a \). By the definition of \(< \), we need to prove \(\neg \exists y (y' + a) = 0 \) in \(Q \). We'll assume \(\exists y (y' + a) = 0 \) and prove a contradiction. Suppose \((b' + a) = 0 \). Using \(Q_3 \), we have that \(a = 0 \lor \exists y a = y' \). We distinguish cases.
Case 1: \(a = \mathfrak{0} \) holds. From \((b' + a) = \mathfrak{0} \), we have \((b' + \mathfrak{0}) = \mathfrak{0} \). By axiom \(Q_4 \) of \(Q \), we have \((b' + \mathfrak{0}) = b' \), and hence \(b' = \mathfrak{0} \). But by axiom \(Q_2 \) we also have \(b' \neq \mathfrak{0} \), a contradiction.

Case 2: For some \(c, a = c' \). But then we have \((b' + c') = \mathfrak{0} \). By axiom \(Q_5 \), we have \((b' + c')' = \mathfrak{0} \), again contradicting axiom \(Q_2 \).

Lemma req.3. For every natural number \(n \),

\[
Q \vdash \forall x (x < n + 1 \rightarrow (x = \mathfrak{0} \lor \cdots \lor x = \mathfrak{m})).
\]

Proof. We use induction on \(n \). Let us consider the base case, when \(n = 0 \). In that case, we need to show \(a < 1 \rightarrow a = a \), for arbitrary \(a \). Suppose \(a < 1 \).

Then by the defining axiom for \(< \), we have \(\exists y (y' + a) = a' \) (since \(1 \equiv a' \)).

Suppose \(b \) has that property, i.e., we have \((b' + a) = a' \). We need to show \(a' \mathfrak{0} \). By axiom \(Q_3 \), we have either \(a = \mathfrak{0} \) or that there is a \(c \) such that \(a = c' \).

In the former case, there is nothing to show. So suppose \(a = c' \). Then we have \((b' + c') = a' \). By axiom \(Q_5 \) of \(Q \), we have \((b' + c')' = a' \). By axiom \(Q_1 \), we have \((b' + c) = \mathfrak{0} \). But this means, by axiom \(Q_8 \), that \(c < \mathfrak{0} \), contradicting Lemma req.2.

Now for the inductive step. We prove the case for \(n + 1 \), assuming the case for \(n \). So suppose \(a < n + \frac{3}{2} \). Again using \(Q_3 \) we can distinguish two cases: \(a = \mathfrak{0} \) and for some \(b, a = c' \). In the first case, \(a = \mathfrak{0} \lor \cdots \lor a = n + 1 \) follows trivially. In the second case, we have \(c' < n + \frac{3}{2} \), i.e., \(c < n + 1 \). By axiom \(Q_8 \), for some \(d, (d' + c') = n + 1 \). By axiom \(Q_5 \), \((d' + c')' = n + 1 \). By axiom \(Q_1 \), \((d' + c) = n + 1 \), and so \(c < n + 1 \) by axiom \(Q_8 \). By inductive hypothesis, \(c = \mathfrak{0} \lor \cdots \lor c = \mathfrak{m} \). From this, we get \(c' = a' \lor \cdots \lor c' = \mathfrak{m} \) by logic, and so \(a = \mathfrak{1} \lor \cdots \lor a = n + 1 \) since \(a = c' \).

Lemma req.4. For every \(m \in \mathbb{N} \),

\[
Q \vdash \forall y ((y < \overline{m} \lor \overline{m} < y) \lor y = \overline{m}).
\]

Proof. By induction on \(m \). First, consider the case \(m = 0 \). \(Q \vdash \forall y (y = \mathfrak{0} \lor \exists z (z' = y)) \) by \(Q_3 \). Let \(a \) be arbitrary. Then either \(a = \mathfrak{0} \) or for some \(b, a = b' \). In the former case, we also have \((a < \mathfrak{0} \lor \mathfrak{0} < a) \lor a = \mathfrak{0} \). But if \(a = b' \), then \((b' + a) = (a' + \mathfrak{0}) \) by the logic of \(\mathfrak{0} \). By axiom \(Q_4 \), \((a' + \mathfrak{0}) = a \), so we have (b' + a) = a. By the definition of \(< \) in \(Q_8 \), \(a < a \). If \(a < a \), then also \((a < a \lor a < \mathfrak{0}) \lor a = \mathfrak{0} \).

Now suppose we have \(Q \vdash \forall y ((y < \mathfrak{m} \lor \mathfrak{m} < y) \lor y = \mathfrak{m}) \)

and we want to show \(Q \vdash \forall y ((y < \overline{m} \lor \overline{m} < y) \lor y = \overline{m}) \)

Let \(a \) be arbitrary. By \(Q_3 \), either \(a = \mathfrak{0} \) or for some \(b, a = b' \). In the first case, we have \(\overline{m} = a = \overline{m} + 1 \) by \(Q_4 \), and so \(a < \overline{m} \) by \(Q_8 \).
Now consider the second case, \(a = b' \). By the induction hypothesis, \(b < m \lor m < b \lor b = m \).

The first disjunct \(b < m \) is equivalent (by \(Q_7 \)) to \(\exists z (z' + b) = m \). Suppose \(c \) has this property. If \((c' + b) = m \), then also \((c' + b)' = m' \). By \(Q_5 \), \((c' + b)' = (c' + b') \). Hence, \((c' + b') = m' \). We get \(\exists u (u' + b') = m + 1 \) by existentially generalizing on \(c' \) and keeping in mind that \(m' = m + 1 \). Hence, if \(b < m \) then \(b' = m + 1 \) and so \(a = m + 1 \).

Now suppose \(m < b \), i.e., \(\exists z (z' + m) = b \). Suppose \(c \) is such a \(z \), i.e., \((c' + m) = m \). By logic, \((c' + m)' = b' \). By \(Q_5 \), \((c' + m') = b' \). Since \(a = b' \) and \(m' = m + 1 \), \((c' + m + 1) = a \). By \(Q_8 \), \(m + 1 < a \).

Finally, assume \(b = m \). Then, by logic, \(b' = m' \), and so \(a = m + 1 \).

Hence, from each disjunct for the case \(m \) and \(b \), we can obtain the corresponding disjunct for \(m + 1 \) and \(a \).

Proposition req.5. If \(\varphi_g(x, z, y) \) represents \(g(x, y) \) in \(Q \), then

\[
\varphi_f(z, y) \equiv \varphi_g(y, z, o) \land \forall w (w < y \rightarrow \neg \varphi_g(w, z, o)).
\]

represents \(f(z) = \mu x [g(x, z) = 0] \).

Proof. First we show that if \(f(n) = m \), then \(Q \vdash \varphi_f(n, m) \), i.e.,

\[
Q \vdash \varphi_g(m, n, o) \land \forall w (w < m \rightarrow \neg \varphi_g(w, n, o)).
\]

Since \(\varphi_g(x, z, y) \) represents \(g(x, z) \) and \(g(m, n) = 0 \) if \(f(n) = m \), we have

\[
Q \vdash \varphi_g(m, n, o).
\]

If \(f(n) = m \), then for every \(k < m \), \(g(k, n) \neq 0 \). So

\[
Q \vdash \neg \varphi_g(k, n, o).
\]

We get that

\[
Q \vdash \forall w (w < m \rightarrow \neg \varphi_g(w, n, o)).
\]

by **Lemma req.2** in case \(m = 0 \) and by **Lemma req.3** otherwise.

Now let’s show that if \(f(n) = m \), then \(Q \vdash \forall y (\varphi_f(n, y) \rightarrow y = m) \). We again sketch the argument informally, leaving the formalization to the reader.

Suppose \(\varphi_f(n, b) \). From this we get (a) \(\varphi_g(b, n, o) \) and (b) \(\forall w (w < b \rightarrow \neg \varphi_g(w, n, o)) \). By **Lemma req.4**, \(b < m \lor m < b \lor b = m \). We’ll show that both \(b < m \) and \(m < b \) leads to a contradiction.

If \(m < b \), then \(\neg \varphi_g(m, n, o) \) from (b). But \(m = f(n) \), so \(g(m, n) = 0 \), and so \(Q \vdash \varphi_g(m, n, o) \) since \(\varphi_g \) represents \(g \). So we have a contradiction.

Now suppose \(b < m \). Then since \(Q \vdash \forall w (w < m \rightarrow \neg \varphi_g(w, n, o)) \) by eq. (6), we get \(\neg \varphi_g(b, n, o) \). This again contradicts (a).
Photo Credits

Bibliography