1 Introduction

We will describe a very minimal such theory called “Q” (or, sometimes, “Robinson’s Q,” after Raphael Robinson). We will say what it means for a function to be representable in Q, and then we will prove the following:

A function is representable in Q if and only if it is computable.

For one thing, this provides us with another model of computability. But we will also use it to show that the set \(\{ \phi : Q \vdash \phi \} \) is not decidable, by reducing the halting problem to it. By the time we are done, we will have proved much stronger things than this.

The language of Q is the language of arithmetic; Q consists of the following axioms (to be used in conjunction with the other axioms and rules of first-order logic with identity predicate):

\[
\begin{align*}
\forall x \forall y (x' = y' \rightarrow x = y) & \quad (Q_1) \\
\forall x \mathcal{O} \neq x' & \quad (Q_2) \\
\forall x (x \neq x \rightarrow \exists y x = y') & \quad (Q_3) \\
\forall x (x + \mathcal{O}) = x & \quad (Q_4) \\
\forall x \forall y (x + y') = (x + y)' & \quad (Q_5) \\
\forall x (x \times \mathcal{O}) = \mathcal{O} & \quad (Q_6) \\
\forall x \forall y (x \times y') = ((x \times y) + x) & \quad (Q_7) \\
\forall x \forall y (x < y \leftrightarrow \exists z (z' + x) = y) & \quad (Q_8)
\end{align*}
\]

For each natural number \(n \), define the numeral \(n \) to be the term \(0''\ldots'' \) where there are \(n \) tick marks in all. So, \(\mathcal{O} \) is the constant symbol \(\mathcal{O} \) by itself, \(1 \) is \(\mathcal{O}' \), \(2 \) is \(\mathcal{O}'' \), etc.

As a theory of arithmetic, Q is extremely weak; for example, you can’t even prove very simple facts like \(\forall x x \neq x' \) or \(\forall x \forall y (x + y) = (y + x) \). But we will see that much of the reason that Q is so interesting is because it is so weak. In fact, it is just barely strong enough for the incompleteness theorem to hold. Another reason Q is interesting is because it has a finite set of axioms.

A stronger theory than Q (called Peano arithmetic PA) is obtained by adding a schema of induction to Q:

\[
(\varphi(\mathcal{O}) \land \forall x (\varphi(x) \rightarrow \varphi(x'))) \rightarrow \forall x \varphi(x)
\]

where \(\varphi(x) \) is any formula. If \(\varphi(x) \) contains free variables other than \(x \), we add universal quantifiers to the front to bind all of them (so that the corresponding instance of the induction schema is a sentence). For instance, if \(\varphi(x, y) \) also contains the variable \(y \) free, the corresponding instance is

\[
\forall y ((\varphi(\mathcal{O}) \land \forall x (\varphi(x) \rightarrow \varphi(x'))) \rightarrow \forall x \varphi(x))
\]

Using instances of the induction schema, one can prove much more from the axioms of PA than from those of Q. In fact, it takes a good deal of work to...
find “natural” statements about the natural numbers that can’t be proved in Peano arithmetic!

Definition req.1. A function \(f(x_0, \ldots, x_k) \) from the natural numbers to the natural numbers is said to be *representable in \(Q \)* if there is a formula \(\varphi_f(x_0, \ldots, x_k, y) \) such that whenever \(f(n_0, \ldots, n_k) = m \), \(Q \) proves

1. \(\varphi_f(n_0, \ldots, n_k, m) \)
2. \(\forall y \ (\varphi_f(n_0, \ldots, n_k, y) \rightarrow m = y) \).

There are other ways of stating the definition; for example, we could equivalently require that \(Q \) proves \(\forall y \ (\varphi_f(n_0, \ldots, n_k, y) \leftrightarrow y = m) \).

Theorem req.2. *A function is representable in \(Q \) if and only if it is computable.*

There are two directions to proving the theorem. The left-to-right direction is fairly straightforward once arithmetization of syntax is in place. The other direction requires more work. Here is the basic idea: we pick “general recursive” as a way of making “computable” precise, and show that every general recursive function is representable in \(Q \). Recall that a function is general recursive if it can be defined from zero, the successor function \(\text{succ} \), and the projection functions \(P^i_n \), using composition, primitive recursion, and regular minimization. So one way of showing that every general recursive function is representable in \(Q \) is to show that the basic functions are representable, and whenever some functions are representable, then so are the functions defined from them using composition, primitive recursion, and regular minimization. In other words, we might show that the basic functions are representable, and that the representable functions are “closed under” composition, primitive recursion, and regular minimization. This guarantees that every general recursive function is representable.

It turns out that the step where we would show that representable functions are closed under primitive recursion is hard. In order to avoid this step, we show first that in fact we can do without primitive recursion. That is, we show that every general recursive function can be defined from basic functions using composition and regular minimization alone. To do this, we show that primitive recursion can actually be done by a specific regular minimization. However, for this to work, we have to add some additional basic functions: addition, multiplication, and the characteristic function of the identity relation \(\chi_\approx \). Then, we can prove the theorem by showing that all of these basic functions are representable in \(Q \), and the representable functions are closed under composition and regular minimization.
Photo Credits

Bibliography