req.1 Composition is Representable in Q

inc:req:cmp: Suppose h is defined by

 $h(x_0, \dots, x_{l-1}) = f(g_0(x_0, \dots, x_{l-1}), \dots, g_{k-1}(x_0, \dots, x_{l-1})).$

where we have already found formulas $\varphi_f, \varphi_{g_0}, \ldots, \varphi_{g_{k-1}}$ representing the functions f, and g_0, \ldots, g_{k-1} , respectively. We have to find a formula φ_h representing h.

Let's start with a simple case, where all functions are 1-place, i.e., consider h(x) = f(g(x)). If $\varphi_f(y, z)$ represents f, and $\varphi_g(x, y)$ represents g, we need a formula $\varphi_h(x, z)$ that represents h. Note that h(x) = z iff there is a y such that both z = f(y) and y = g(x). (If h(x) = z, then g(x) is such a y; if such a y exists, then since y = g(x) and z = f(y), z = f(g(x)).) This suggests that $\exists y (\varphi_g(x, y) \land \varphi_f(y, z))$ is a good candidate for $\varphi_h(x, z)$. We just have to verify that **Q** proves the relevant formulas.

inc:req:cmp: Prop prop:rep1

prop:rep2

osition req.1. If
$$h(n) = m$$
, then $\mathbf{Q} \vdash \varphi_h(\overline{n}, \overline{m})$

Proof. Suppose h(n) = m, i.e., f(g(n)) = m. Let k = g(n). Then

$$\mathbf{Q} \vdash \varphi_g(\overline{n}, \overline{k})$$

since φ_g represents g, and

$$\mathbf{Q} \vdash \varphi_f(\overline{k}, \overline{m})$$

since φ_f represents f. Thus,

$$\mathbf{Q} \vdash \varphi_g(\overline{n}, k) \land \varphi_f(k, \overline{m})$$

and consequently also

$$\mathbf{Q} \vdash \exists y \, (\varphi_g(\overline{n}, y) \land \varphi_f(y, \overline{m})),$$

i.e., $\mathbf{Q} \vdash \varphi_h(\overline{n}, \overline{m})$.

inc:req:cmp: **Proposition req.2.** If h(n) = m, then $\mathbf{Q} \vdash \forall z (\varphi_h(\overline{n}, z) \rightarrow z = \overline{m})$.

Proof. Suppose h(n) = m, i.e., f(g(n)) = m. Let k = g(n). Then

$$\mathbf{Q} \vdash \forall y \, (\varphi_a(\overline{n}, y) \to y = k)$$

since φ_g represents g, and

$$\mathbf{Q} \vdash \forall z \, (\varphi_f(k, z) \to z = \overline{m})$$

since φ_f represents f. Using just a little bit of logic, we can show that also

$$\mathbf{Q} \vdash \forall z \, (\exists y \, (\varphi_g(\overline{n}, y) \land \varphi_f(y, z)) \to z = \overline{m}).$$

i.e.,
$$\mathbf{Q} \vdash \forall y \ (\varphi_h(\overline{n}, y) \to y = \overline{m}).$$

composition-representable rev: 016d2bc (2024-06-22) by OLP / CC-BY

1

The same idea works in the more complex case where f and g_i have arity greater than 1.

Proposition req.3. If $\varphi_f(y_0, \ldots, y_{k-1}, z)$ represents $f(y_0, \ldots, y_{k-1})$ in \mathbf{Q} , incircular incircular indication $\varphi_{g_i}(x_0, \ldots, x_{l-1}, y)$ represents $g_i(x_0, \ldots, x_{l-1})$ in \mathbf{Q} , then

$$\exists y_0 \dots \exists y_{k-1} \left(\varphi_{g_0}(x_0, \dots, x_{l-1}, y_0) \land \dots \land \varphi_{q_{k-1}}(x_0, \dots, x_{l-1}, y_{k-1}) \land \varphi_f(y_0, \dots, y_{k-1}, z) \right)$$

represents

$$h(x_0,\ldots,x_{l-1}) = f(g_0(x_0,\ldots,x_{l-1}),\ldots,g_{k-1}(x_0,\ldots,x_{l-1})).$$

Proof. Exercise.

Problem req.1. Using the proofs of Proposition req.2 and Proposition req.2 as a guide, carry out the proof of Proposition req.3 in detail.

Photo Credits

Bibliography