Suppose h is defined by

$$h(x_0, \ldots, x_{l-1}) = f(g_0(x_0, \ldots, x_{l-1}), \ldots, g_{k-1}(x_0, \ldots, x_{l-1})).$$

where we have already found formulas $\varphi_f, \varphi_{g_0}, \ldots, \varphi_{g_{k-1}}$ representing the functions f, and g_0, \ldots, g_{k-1}, respectively. We have to find a formula φ_h representing h.

Let's start with a simple case, where all functions are 1-place, i.e., consider $h(x) = f(g(x))$. If $\varphi_f(y, z)$ represents f, and $\varphi_g(x, y)$ represents g, we need a formula $\varphi_h(x, z)$ that represents h. Note that $h(x) = z$ iff there is a y such that both $z = f(y)$ and $y = g(x)$. (If $h(x) = z$, then $g(x)$ is such a y; if such a y exists, then since $y = g(x)$ and $z = f(y)$, $z = f(g(x))$.) This suggests that $\exists y (\varphi_g(x, y) \land \varphi_f(y, z))$ is a good candidate for $\varphi_h(x, z)$. We just have to verify that Q proves the relevant formulas.

Proposition req.1. If $h(n) = m$, then $Q \vdash \varphi_h(n, m)$.

Proof. Suppose $h(n) = m$, i.e., $f(g(n)) = m$. Let $k = g(n)$. Then

$$Q \vdash \varphi_g(n, k)$$

since φ_g represents g, and

$$Q \vdash \varphi_f(k, m)$$

since φ_f represents f. Thus,

$$Q \vdash \varphi_g(n, k) \land \varphi_f(k, m)$$

and consequently also

$$Q \vdash \exists y (\varphi_g(n, y) \land \varphi_f(y, m)),$$

i.e., $Q \vdash \varphi_h(n, m)$. \qed

Proposition req.2. If $h(n) = m$, then $Q \vdash \forall z (\varphi_h(n, z) \rightarrow z = m)$.

Proof. Suppose $h(n) = m$, i.e., $f(g(n)) = m$. Let $k = g(n)$. Then

$$Q \vdash \forall y (\varphi_g(n, y) \rightarrow y = k)$$

since φ_g represents g, and

$$Q \vdash \forall z (\varphi_f(k, z) \rightarrow z = m)$$

since φ_f represents f. Using just a little bit of logic, we can show that also

$$Q \vdash \forall z (\exists y (\varphi_g(n, y) \land \varphi_f(y, z)) \rightarrow z = m).$$

i.e., $Q \vdash \forall y (\varphi_h(n, y) \rightarrow y = m)$. \qed
The same idea works in the more complex case where f and g_i have arity greater than 1.

Proposition req.3. If $\varphi_f(y_0, \ldots, y_{k-1}, z)$ represents $f(y_0, \ldots, y_{k-1})$ in Q, and $\varphi_{g_i}(x_0, \ldots, x_{l-1}, y)$ represents $g_i(x_0, \ldots, x_{l-1})$ in Q, then

$$\exists y_0, \ldots, \exists y_{k-1} (\varphi_{g_0}(x_0, \ldots, x_{l-1}, y_0) \land \cdots \land \varphi_{g_{k-1}}(x_0, \ldots, x_{l-1}, y_{k-1}) \land \varphi_f(y_0, \ldots, y_{k-1}, z))$$

represents

$$h(x_0, \ldots, x_{k-1}) = f(g_0(x_0, \ldots, x_{k-1}), \ldots, g_0(x_0, \ldots, x_{k-1})).$$

Proof. Exercise.

Problem req.1. Using the proofs of Proposition req.2 and Proposition req.2 as a guide, carry out the proof of Proposition req.3 in detail.

Photo Credits

Bibliography