
req.1 The Beta Function Lemma

inc:req:bet:
sec

In order to show that we can carry out primitive recursion if addition,
multiplication, and χ= are available, we need to develop functions that han-
dle sequences. (If we had exponentiation as well, our task would be easier.)
When we had primitive recursion, we could define things like the “n-th prime,”
and pick a fairly straightforward coding. But here we do not have primitive
recursion—in fact we want to show that we can do primitive recursion using
minimization—so we need to be more clever.

Lemma req.1.inc:req:bet:

lem:beta

There is a function β(d, i) such that for every sequence a0,
. . . , an there is a number d, such that for every i ≤ n, β(d, i) = ai. Moreover,
β can be defined from the basic functions using just composition and regular
minimization.

Think of d as coding the sequence 〈a0, . . . , an〉, and β(d, i) returning the i-
th element. (Note that this “coding” does not use the prower-of-primes coding
we’re already familiar with!). The lemma is fairly minimal; it doesn’t say we can
concatenate sequences or append elements, or even that we can compute d from
a0, . . . , an using functions definable by composition and regular minimization.
All it says is that there is a “decoding” function such that every sequence is
“coded.”

The use of the notation β is Gödel’s. To repeat, the hard part of proving
the lemma is defining a suitable β using the seemingly restricted resources,
i.e., using just composition and minimization—however, we’re allowed to use
addition, multiplication, and χ=. There are various ways to prove this lemma,
but one of the cleanest is still Gödel’s original method, which used a number-
theoretic fact called the Chinese Remainder theorem.

Definition req.2. Two natural numbers a and b are relatively prime if their
greatest common divisor is 1; in other words, they have no other divisors in
common.

Definition req.3. a ≡ b mod c means c | (a− b), i.e., a and b have the same
remainder when divided by c.

Here is the Chinese Remainder theorem:

Theorem req.4. Suppose x0, . . . , xn are (pairwise) relatively prime. Let y0,
. . . , yn be any numbers. Then there is a number z such that

z ≡ y0 mod x0

z ≡ y1 mod x1

...

z ≡ yn mod xn.

beta-function rev: 445393f (2018-08-14) by OLP / CC–BY 1

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Here is how we will use the Chinese Remainder theorem: if x0, . . . , xn are
bigger than y0, . . . , yn respectively, then we can take z to code the sequence
〈y0, . . . , yn〉. To recover yi, we need only divide z by xi and take the remainder.
To use this coding, we will need to find suitable values for x0, . . . , xn.

A couple of observations will help us in this regard. Given y0, . . . , yn, let

j = max(n, y0, . . . , yn) + 1,

and let

x0 = 1 + j!

x1 = 1 + 2 · j!
x2 = 1 + 3 · j!
...

xn = 1 + (n+ 1) · j!

Then two things are true:

1. x0, . . . , xn are relatively prime.

2. For each i, yi < xi.

To see that (1) is true, note that if p is a prime number and p | xi and p | xk,
then p | 1 + (i+ 1)j! and p | 1 + (k + 1)j!. But then p divides their difference,

(1 + (i+ 1)j!)− (1 + (k + 1)j!) = (i− k)j!.

Since p divides 1+(i+1)j!, it can’t divide j! as well (otherwise, the first division
would leave a remainder of 1). So p divides i− k, since p divides (i− k)j!. But
|i− k| is at most n, and we have chosen j > n, so this implies that p | j!, again
a contradiction. So there is no prime number dividing both xi and xk. Clause
(2) is easy: we have yi < j < j! < xi.

Now let us prove the β function lemma. Remember that we can use 0,
successor, plus, times, χ=, projections, and any function defined from them
using composition and minimization applied to regular functions. We can also
use a relation if its characteristic function is so definable. As before we can
show that these relations are closed under boolean combinations and bounded
quantification; for example:

1. not(x) = χ=(x, 0)

2. (min x ≤ z)R(x, y) = µx (R(x, y) ∨ x = z)

3. (∃x ≤ z) R(x, y)⇔ R((min x ≤ z)R(x, y), y)

We can then show that all of the following are also definable without primitive
recursion:

1. The pairing function, J(x, y) = 1
2 [(x+ y)(x+ y + 1)] + x

2 beta-function rev: 445393f (2018-08-14) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

2. Projections

K(z) = (min x ≤ q) (∃y ≤ z [z = J(x, y)])

and
L(z) = (min y ≤ q) (∃x ≤ z [z = J(x, y)]).

3. x < y

4. x | y

5. The function rem(x, y) which returns the remainder when y is divided
by x

Now define
β∗(d0, d1, i) = rem(1 + (i+ 1)d1, d0)

and
β(d, i) = β∗(K(d), L(d), i).

This is the function we need. Given a0, . . . , an, as above, let

j = max(n, a0, . . . , an) + 1,

and let d1 = j!. By the observations above, we know that 1+d1, 1+2d1, . . . , 1+
(n+1)d1 are relatively prime and all are bigger than a0, . . . , an. By the Chinese
Remainder theorem there is a value d0 such that for each i,

d0 ≡ ai mod (1 + (i+ 1)d1)

and so (because d1 is greater than ai),

ai = rem(1 + (i+ 1)d1, d0).

Let d = J(d0, d1). Then for each i ≤ n, we have

β(d, i) = β∗(d0, d1, i)

= rem(1 + (i+ 1)d1, d0)

= ai

which is what we need. This completes the proof of the β-function lemma.

Photo Credits

Bibliography

3

	The Beta Function Lemma
	Photo Credits
	Bibliography

