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Hilbert expected that mathematics could be formalized in an axiomatizable
theory which it would be possible to prove complete and decidable. Moreover,
he aimed to prove the consistency of this theory with very weak, “finitary,”
means, which would defend classical mathematics agianst the challenges of
intuitionism. Gödel’s incompleteness theorems showed that these goals cannot
be achieved.

Gödel’s first incompleteness theorem showed that a version of Russell and
Whitehead’s Principia Mathematica is not complete. But the proof was actu-
ally very general and applies to a wide variety of theories. This means that it
wasn’t just that Principia Mathematica did not manage to completely capture
mathematics, but that no acceptable theory does. It took a while to isolate
the features of theories that suffice for the incompleteness theorems to apply,
and to generalize Gödel’s proof to apply make it depend only on these fea-
tures. But we are now in a position to state a very general version of the first
incompleteness theorem for theories in the language LA of arithmetic.

Theorem int.1. If Γ is a consistent and axiomatizable theory in LA which
represents all computable functions and decidable relations, then Γ is not com-
plete.

To say that Γ is not complete is to say that for at least one sentence ϕ,
Γ 0 ϕ and Γ 0 ¬ϕ. Such a sentence is called independent (of Γ ). We can in
fact relatively quickly prove that there must be independent sentences. But
the power of Gödel’s proof of the theorem lies in the fact that it exhibits a
specific example of such an independent sentence. The intriguing construction
produces a sentence GΓ , called a Gödel sentence for Γ , which is unprovable
because in Γ , GΓ is equivalent to the claim that GΓ is unprovable in Γ . It
does so constructively, i.e., given an axiomatization of Γ and a description of
the proof system, the proof gives a method for actually writing down GΓ .

The construction in Gödel’s proof requires that we find a way to express
in LA the properties of and operations on terms and formulas of LA itself.
These include properties such as “ϕ is a sentence,” “δ is a derivation of ϕ,”
and operations such as ϕ[t/x]. This way must (a) express these properties and
relations via a “coding” of symbols and sequences thereof (which is what terms,
formulas, derivations, etc. are) as natural numbers (which is what LA can talk
about). It must (b) do this in such a way that Γ will prove the relevant facts,
so we must show that these properties are coded by decidable properties of
natural numbers and the operations correspond to computable functions on
natural numbers. This is called “arithmetization of syntax.”

Before we investigate how syntax can be arithmetized, however, we will
consider the condition that Γ is “strong enough,” i.e., represents all computable
functions and decidable relations. This requires that we give a precise definition
of “computable.” This can be done in a number of ways, e.g., via the model
of Turing machines, or as those functions computable by programs in some
general-purpose programming language. Since our aim is to represent these
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functions and relations in a theory in the language LA, however, it is best to
pick a simple definition of computability of just numerical functions. This is the
notion of recursive function. So we will first discuss the recursive functions. We
will then show that Q already represents all recursive functions and relations.
This will allow us to apply the incompleteness theorem to specific theories such
as Q and PA, since we will have established that these are examples of theories
that are “strong enough.”

The end result of the arithmetization of syntax is a formula ProvΓ (x) which,
via the coding of formulas as numbers, expresses provability from the axioms
of Γ . Specifically, if ϕ is coded by the number n, and Γ ` ϕ, then Γ ` ProvΓ (n).
This “provability predicate” for Γ allows us also to express, in a certain sense,
the consistency of Γ as a sentence of LA: let the “consistency statemetn”
for Γ be the sentence ¬ProvΓ (n), where we take n to be the code of a contra-
diction, e.g., of ⊥. The second incompleteness theorem states that consistent
axiomatizable theories also do not prove their own consistency statements. The
conditions required for this theorem to apply are a bit more stringent than just
that the theory represents all computable functions and decidable relations,
but we will show that PA satisifes them.
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